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Extended X-ray absorption fine structure (EXAFS) 
spectroscopy is a strong tool for investigating the local 
structure of materials, even without crystal-like long range 
order. X-rays have a large penetration power so that 
catalytic reactions or electrochemical processes can be 
followed in the presence of reactants under reaction 
conditions.  However, this provides only one-dimensional 
information and a limited number of data points. This can 
make the EXAFS approach to the analysis of complex 
systems difficult. In this short review we describe the 
present status of EXAFS analysis and its problems. We 
also discuss future directions and new possibilities. 
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1. Introduction 
Extended X-ray absorption fine structure 

(EXAFS) spectroscopy is a powerful method for 
analyzing the structure of materials with no long 
range order. 1,2  Figure 1 shows an X-ray spectrum 
near the Pt L3 edge.  The absorption coefficient 
suddenly increases at the binding energy of core 
electrons (in this case L3 or 2p3/2 electrons), which is 
termed the absorption edge.  At this energy, core 
electrons are excited to photoelectrons and leave the 
atom in a spherical wave.  The modulations of the 
absorption coefficient near and in the higher energy 

region of the absorption edge are called X-ray 
absorption fine structure (XAFS).  The XAFS is 
divided into two regions.  One is the X-ray 
absorption near-edge structure (XANES) that arises 
from transitions to unoccupied bound states or from 
multiple scattering of photoelectrons by the 
surrounding atoms.  EXAFS appears at an energy 
50 eV higher energy than the absorption edge.  The 
EXAFS is explained by single scattering of 
photoelectrons by surrounding atoms due to 
interference between the outgoing photoelectrons 
and the electrons scattered by the surrounding atoms 

as shown in inset of  Fig.1 where the outgoing 
photoelectron and scattered electrons interfere at the 
x-ray absorbing atom.3  The EXAFS oscillations 
are expressed by the following equation.4 

 
 

𝜒(𝑘) =&C𝑁)𝐹)(𝑘)exp.−2𝑟)/λ)4 

exp.−2𝜎)6𝑘64sin.2𝑘𝑟) + 𝜙)(𝑘)4/𝑘𝑟)6 
(1)  

 
where 	𝐶𝑁), 𝑟), 𝜆)	𝑎𝑛𝑑	𝜎)

6  are the coordination 
number, the bond distance, the inelastic mean free 
path and the Debye-Waller factor for the j-th 
surrounding atom, respectively. 𝐹)(𝑘)	and 𝜙)(𝑘)	 

are the backscattering amplitude and the phase shift 
functions for the j-th atom, respectively.  k is the 
wavenumber of the photoelectron given by  

𝑘 = C2𝑚/ℏ6	(ℎ𝜐 − 𝐸I), 

(2) 
where m is the mass of an electron and ℏ = ℎ/2𝜋.  
ℎ𝜐 and 𝐸I	are the X-ray photon energy and the 
binding energy of core electron or photoelectron 
kinetic energy zero point, respectively.  E0 can be 
selected to be equal to the absorption edge.  
However, it should be optimized because the 
wavenumber in the theoretically calculated result is 
different from the experimental wavenumber 
calculated from Eq. (2).  After 𝐹)(𝑘) and 𝜙)(𝑘) 

are determined either theoretically or empirically, 

𝐶𝑁), 𝑟), 𝜎)6 and  𝐸I are then optimized by curve 
fitting to give the structure.   
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Figure 1.  Pt L3-edge EXAFS.  The abrupt 
increase at 11560 eV is referred to as the 
absorption edge.  The edge peak is called a 
white line.  The modulation of the 
absorption coefficient is referred to as the 
XAFS.  The higher energy region 
corresponds to the EXAFS.  Inset is the 
shematic explanation for the mechanism of 
EXAFS . 

 
Since EXAFS is a type of X-ray absorption 

spectroscopy, it can be applied to non-crystalline 
systems.1  The high penetrating power of X-rays 
enables in situ experiments to be conducted.  These 

features have made it possible to perform structural 
determination of catalysts under working 
conditions.2,5-10   

Some drawbacks are that EXAFS only provides 
one-dimensional information and that the number of 
data points obtained is limited by Nyquist theory, as 
discussed later.  It can be difficult to determine the 
structure of complex molecules or materials with 
different bond lengths by curve fitting. 
  In this short review, we present the current status 
of EXAFS analysis and the remaining problems, 
especially with respect to curve fitting.  We 

propose several possible solutions to overcome these 
problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Flow chart of EXAFS analysis 
 
 
2. EXAFS data treatment and analysis  

Figure 2 shows a flowchart of the steps involved 
in EXAFS analysis.11,12  The photon energy is 
converted to k (wavenumber) using Eq. (2).  The 
background is removed from the raw data; the 
background is calculated using spline smoothing 
using Cook/Sayers criteria.13  The oscillations are 
then normalized with respect to the edge height.  
The edge height is estimated by extrapolation of the 
pre-edge region to higher energy and calculation of 

the difference between the extrapolated pre-edge 
curve and the post-edge background determined by 
spline smoothing.12  The edge height has an energy 
dependence expressed by the Victoreen or McMaster 
equations.14,15  The EXAFS oscillations are 
multiplied by a weighting factor or kn (n is typically 
3) to compensate for damping of the EXAFS 
oscillations in high-k regions.  EXAFS oscillations 
are expressed as a sine function; therefore, a Fourier 
transform gives peaks that correspond to the bond 
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lengths.  The term coordination shell is often used.  
Atoms of the same type of element coordinated to 

the central atom with the same bond length are 
classified as one coordination shell.  The 
coordination shells can be separated using a Fourier 
transform if the bond lengths are sufficiently 
different from each other.  Each peak is inversely 
Fourier transformed to k space again and curve 
fitting is performed using Eq.(1).  𝐹)(𝑘)	and 𝜙)(𝑘) 

can be derived theoretically using FEFF, a 
theoretical EXAFS calculation code.16  Non-linear 
least squares curve fitting is performed, in which the 
initial parameters are based on the scattering atoms.  
To separate several coordination shells, the Fourier 

transform peaks are selected and the data are 
inversely Fourier transformed to k-space again, and 
curve fitting is conducted.  The residual between 
the observed and calculated spectra is obtained and 
the parameters are then changed to reduce the 
residual.  This residual is discussed later as R2 (the 
R-factor), which is given by Eq. (4).  Several 
routines can be used to determine the minimum, such 
as the Newton-Raphson, Powell, and Levenberg–
Marquardt methods.17  
  When the difference between two coordination 
shells is small, the shells must be analyzed at the 

same time.  This multi-shell analysis causes many 
serious problems and is the main topic of this paper.  
If the different shells consist of the same element but 
have slightly different bond lengths, they can be 
analyzed as a single shell with static disordering.  If 
the bond length distribution is symmetric or 
Gaussian, the static disordering can be expressed 
using the Debye-Waller term.  If the distribution is 
asymmetric, then it cannot be exactly expressed 
using the Debye-Waller term, and this is a problem 
for non-crystalline systems for which EXAFS is the 
only method for structural analysis.  Such multi-

shell and asymmetric scenarios are the two main 
problems in EXAFS analysis. 

  At the end of this section, where we present an 
overview of EXAFS analysis, the errors involved in 

EXAFS will be discussed, specifically those related 
to the experimental procedure and data processing. 
  Concerning errors related to the experimental 
procedure, synchrotron radiation is a typical light 
source and provides a high X-ray flux and good 
statistics.  The EXAFS instruments installed in 
synchrotron facilities are well tuned and maintained 
by the synchrotron facility staff members.  Errors 
in experiments may arise from sample preparation, 
which is carried out by the users themselves.  The 
important point in sample preparation is how to 
obtain a homogenous sample with an appropriate 

thickness.  A powder sample must be well 
ground,18 and then mixed with boron nitride (BN) or 
other diluents and made into a disk with uniform 
thickness.  The appropriate thickness is that which 
provides a total absorption coefficient of less than 4, 
an edge height of more than 0.2 and ideally close to 
1.0.  If it is difficult to obtain such values, then the 
sample can be measured using other methods, such 
as fluorescence yield and electric current yield 
modes.  When a sample is carefully prepared, the 
experimental error is less than 1% for the 
coordination number, which is much smaller than the 

errors created in data processing.   
Concerning the data processing, its most 

important point is how to correctly estimate the 
normalization factor.  Its incorrect and careless 
evaluation can lead to an error of up to 10%.   Bian 
et al. discussed the possible errors in EXAFS data 
processing for a PdCu bimetallic cluster and found 
that the estimation of the normalization factor can 
produce a 3% error in the coordination number, even 
after its careful selection.19  More attention should 
therefore be paid to the normalization process. 

Larger errors may occur in the curve fitting 

process for a complex system.  If the sample is a 
simple system with one type of element in well-
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separated coordination shells, then EXAFS analysis 
can determine the bond lengths with a precision of 

0.001 nm, and the coordination number with an 
accuracy of ±0.3 for the first shell.  However, for 
multi-shell analysis of a complex structure, large 
errors or no reliable fitting results will be obtained.  
In what follows, we discuss difficulties and problems 
with curve fitting. 
3. Problems with curve fitting  

The problems and difficulties with curve fitting to 
determine the structural parameters in a complex 
system can be summarized as follows:  
1. Number of data points 
2. Goodness of fit 

3. Parameter correlations 
4. Initial parameter dependence 
5. Error estimation 
6. Asymmetric distribution 

We discuss each of these separately, although the 
six items are correlated with each other.  The key 
words are “multi-shell fitting” and “asymmetric 
distribution”.  The sources of the difficulties are the 
limited number of data points and parameter 
correlation. 
3-1.  Number of data points  
   The number of data points, ν , which can be 

extracted from the EXAFS is limited by the Nyquist 
theory:20 

ν = 2(𝑘LMN − 𝑘LOP)(𝑟LMN − 𝑟LOP)/π + 2, 
or  

ν = (2Δ𝑘	Δ𝑟	/π) + 2, 
(3) 

where 

Δ𝑘 = (𝑘LMN − 𝑘LOP), 
	Δ𝑟 = 	(𝑟LMN − 𝑟LOP). 

If Δ𝑘 = 120(= 150 − 30)𝑛𝑚VW	 and Δ𝑟 =
0.15	𝑛𝑚 , then ν ≈ 14 .  The number of fitting 

parameters, p, must be smaller than n.   If four 
parameters are necessary for each shell, then only 
three shells at most can be determined.  Therefore, 

it is quite difficult to investigate a complex system 
with different bond lengths and types of coordinating 

atoms. 

 
 
Figure 3. Local structure of MoO3  
 
 

For example, consider the structure of MoO3.  
Figure 3 shows that MoO3 has 6 different bonds with 
lengths in the range of 0.160-0.240 nm． The bonds 
cannot typically be distinguished by the Fourier 
transform approach and the data is thus analyzed 
using multi-shell curve fitting.  If each bond 

requires four parameters (CN, r, s, and E0), then 24 
fitting parameters (4×6) are needed.  This is larger 

than the number of data points (n=14) obtained by 
Eq. (3), so it is difficult to determine the exact 
structure.  The number of fitting parameters must 

therefore be reduced.  One way to achieve this is to 
classify the bonds into three categories.  One is 
short bonds in the range of 0.16-0.18 nm, which 
corresponds to Mo=O double bonds.  The second is 
in the range of 0.19-0.21 nm, which corresponds to 
Mo-O single bonds, and the third is in the range of 
0.22-0.24 nm.  E0 can then be set to the same value, 
which is equal to that for the reference compounds.  
Consequently, the number of fitting parameters can 
be reduced to six and reasonable fitting results can 
be obtained, as shown in Table 1, if the initial 
structure determined by crystallography was used.21  

The coordination number can be well reproduced 
within the error margin. However, a priori 
information regarding the MoO3 structure is required, 
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without which, the coordination number cannot be 
obtained easily.  

 
Table 1.  Three-shell curve fitting results for 
MoO3.21 

 CN r / nm 
s2 / 0.01 

nm2 
R2 

r1 1.6 0.170 0.0024 
0.0004 r2 2.2 0.196 0.0037 

r3 2.4 0.228 0.0079 

 

The number of data points and the number of 
parameters for the EXAFS spectrum must thus be 
given significant attention.  The way to increase the 
number of data points is to measure as large a k-
range as possible.  EXAFS oscillations are damped 
in the high k-region because the scattering ability of 
surrounding atoms for electrons with high 
wavenumber, k, (or large momentum p) is small, and 
because of the reduction factor 1/k in Eq.(1), and the 
Debye-Waller factor due to the thermal and static 
disorder.  Thermal disorder can be reduced by low-
temperature measurement.  XAFS experiments at 

low temperature are thus recommended in order to 
measure the high k-region signal with good quality.   

Figure 4 shows EXAFS oscillations for Fe foil 
measured at room temperature (RT) and at 70 K.  
The EXAFS at 70 K is approximately 1.2 times 
stronger than that at room temperature.  The k-
range for the Fourier transform can be extended to 
200 nm-1.  The first peak around 0.217 nm is split 
in the Fourier transformed data for the 70 K 
measurement.  Fe has a body-centered cubic (BCC) 
crystal structure, so that the first peak contains two 
shells of eight (r=0.246 nm) Fe-Fe + 6 (r=0.284 nm) 

Fe-Fe bonds.  The peak at RT is not split clearly 
where data up to 170 nm-1 is available, but it begins 
to split at 70 K due to the increase of the k-range 

(Dk=30–200 nm-1 at 70 K) and the increase in the 
oscillation intensity in the high k-region. 

 

 
Figure 4.  EXAFS oscillations and their 
Fourier transforms for Fe foil measured at 
different temperatures.  
 
The fitting results are shown in Table 2.  When the 
Fe K-edge EXAFS measured at RT was analyzed by 
two-shell fitting, a good fitting result was obtained.  
In this analysis, E0 for the two shells were common.  

The coordination number for the second shell (at 
0.285 nm) was larger than expected at RT, while that 
for the first shell was well reproduced.  On the 
other hand, the EXAFS results measured at 70 K 
gave coordination numbers of near 8 and 6, which 

are in good agreement with the crystal data.  The 
numbers of data points were ν = 	13.4 for RT and 
ν = 	16.2	  for 70 K.  Therefore, the fit is more 
reliable for the 70 K data and the best fit value 
corresponds well with the actual value.  On the 
other hand, the RT data gave the best fit values with 
large errors.  The second shell Fe-Fe coordination 

number (8.6) is larger than 6.  When the parameters 

were fixed to values determined at 70 K, except s2, 
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which expresses the thermal disorder, a structure 
with a reasonable degree of fitting (R2= 8×10-3) 

could be obtained.  R2 is defined by Eq. (4).  R2 is 
insensitive to the fitting parameters when a large 
number of fitting parameters are used with a small 
number of data points, or when curve fitting is 

conducted for a smaller value of n-p.  
 
Table 2. Curve fitting results for Fe foil 
measured at RT and 70 K. 

T Bond CN 
r / 
nm 

E0/ 
eV 

s/ 0.0

1 nm2 

R2/ 

10-3 

70K 
Fe-Fe 7.5 0.248 1.1 0.045 

10 
Fe-Fe 6.2 0.285 1.1 0.059 

RT 
Fe-Fe 7.2 0.247 -3.6 0.063 

2 
Fe-Fe 8.6 0.283 -5.0 0.085 

RT* 

 

Fe-Fe (7.5) (0.248) (1.1) 0.062 
8 

Fe-Fe (6.2) (0.285) (1.1) 0.075 

70K Fe-Fe 10.5 0.250 7.3 0.058 120 

*1 structure parameter, except s, is	fixed	at	values	
for	70	K.	Numbers in parentheses show the fixed 
parameters. 
 

In summary, if curve fitting is performed for a 
complex system, then care must be taken with the 
number of data points; p must be less than 𝜈 .  
Moreover, a large value of 𝜈 − 𝑝	 is preferable 
because curve fitting is more reliable and sharp 
around the best fitted values.  

3-2.  Goodness of fit 
The goodness of fit is evaluated by R2, which is 

defined as  
 
𝑅6 = ∑(χabc(𝑘) − χdef(𝑘))6 /∑(χdef(𝑘))6	. 

(4) 
 
A smaller R2 indicates better fitting results.  
However, there are questions with respect to the 
meaning of R2 and the criterion for good fitting 
results.  

If χabc(𝑘) ≈ 𝜒def(𝑘) , then 𝑅6  would be 0.  If 
χabc(𝑘) = 0	 for all k, 𝑅6 = 1 .  If 	𝜒abc	(𝑘)	is	

g
6
 

rad different from χdef(𝑘) , then 𝑅6 ≈ 2 .  
Although we have no definite criterion to show if a 
fit is sufficient, it is often said that when R2 is less 
than 0.1, the model is acceptable.  If R2 for the 
reference compounds is always more than 0.1, then 
the validity of the phase shift and amplitude 
functions derived from theoretical calculation such 
as the FEFF program could be accepted.  Care must 
be taken to increase the number of fitting parameters 
to obtain a good fitting result.  An increase in the 
number of fitting parameters often gives a smaller R2, 
and R2<0.1 can easily be obtained.  However, a 

smaller R2 is not always better, even if the number of 
parameters is less than the number of data points.  
In addition, we cannot say that the model structure 
that gives the smallest R2 is superior to the others, 
even if the number of fitting parameters is the same.   
  In summary, R2 is a simple indicator of the 
goodness of fit; however, there are no definite 
criteria regarding sufficient fitting and caution is 
required with respect to R2 if too many parameters 
are needed to obtain better fitting. 
  The committee of XAFS Standards and Criteria 
have suggested the use of χ6 instead of 𝑅6:22,23 

𝜒6 = h
hVi

W
jklml

∑.χabc(𝑘O) − χdef(𝑘O)4
6/𝜀O6, 

 
	(5) 

where Ndata is the number of data points and 𝜀O is 
the error for each data point.   
  χ6 follows a χ6 −distribution, which should take 
a maximum when χ6 = 1.  If χ6 ≫1 or χ6 		≪ 1, 
then the fitting results are less reliable.  Note that 
χ6 = 0  is much less probable and not acceptable 
from statistical reasons alone.   

If many parameters are used, then the χ6 value 

will increase for a certain number of fitting 
parameters, even though R2 is much lower.  The 
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effect of p can be taken into account by including the 
ν − 𝑝	term in the denominator.  The estimation of 

parameter errors is easier.  The XAFS Standards 
and Criteria suggested in 1990 that the error bar for 
a parameter should be estimated by an increase of 
(ν − 𝑝)χ6 by 1 when the parameter was fixed at a 
value that deviated from the best fit with other 
parameters optimized.22  This value corresponds to 

the significance level of one s  in the Gaussian 
distribution (or 32%).24   

Despite these advantages, c2 has a disadvantage 
in the estimation of ei , the error at each data point.  
ei not only includes the probability (statistical) error, 
which can be estimated from the statistical treatment 

of the data, but it also contains systematic (non-
statistical) errors.22  Systematic errors arise from 
many uncontrollable sources, so that correct 
estimations are difficult.  If the probability errors 
are larger than the systematic errors, then the error 
𝜀O6  could be represented by the probability error.  
However, the standard data quality obtained in 
synchrotron facilities in transmission mode is very 
good and the probability errors can be neglected.  If 

only the probability error is used, then c2 will be 
much larger than unity.  The analysis of systematic 

errors is too difficult to estimate 𝜀O6  correctly; 

therefore, we cannot use c2 directly, which is why 
many people still use R2 instead of c2, although the 
meaning of R2 is not so clear.  This disadvantage of 
R2 will be discussed later. 
3-3.  Correlation problem 
R2 is adopted for estimation of the degree of fit.  
Non-linear curve fitting is conducted to determine 
the minimum of R2.  Here, the p dimensional 
parameter vector 	𝓟  is defined, of which the 
components are fitting parameters 
(𝑝W, 𝑝6, 𝑝r,⋯ , 	𝑝 p), where the number of fitting 
parameters is p.  Now we define the residual 

𝛿𝜀u(𝑘O): 
 

χabc(𝑘O, 𝓟) − χdef(𝑘O) = 𝛿𝜀u(𝑘O) 

&𝛿𝜀u(𝑘O)6 =&|χabc(𝑘O, 𝓟) − χdef(𝑘O)|6

= 𝑅6(𝓟)&|χdef(𝑘O)|6

= 𝑅6(𝓟) ∗ 𝐶𝑜𝑛𝑠𝑡 = 𝑅{6 (𝓟) 
(6) 

 
After curve fitting, the optimal parameters are 
determined as 𝓟𝒇 .  Around 𝓟𝒇, 𝑅’6(𝓟) can be 

expanded in a Taylor series.  
~���.𝓟𝒇4

�i�
= 0(𝑖 =

1,2,3,⋯ , 𝑝); therefore, 

𝑅{6(𝓟) = 𝑅{6.𝓟𝒇4 + 1/2	 ∑
~����.𝓟𝒇4

�i� �i�
Δ𝑝�Δ𝑝)

�
O,) , 

(7) 
 

𝑅{6(𝓟) = 𝑅{6.𝓟𝒇4 + ∑ 𝐵O)Δ𝑝�Δ𝑝)
i
O,) , 

(8) 
If the non-diagonal term 𝐵O) = 0, (𝑖 ≠ 𝑗), then there 

is no correlation between the fitting parameters.  In 
contrast, when 𝐵O) ≠ 0, (𝑖 ≠ 𝑗) , there is a 

correlation.  In a single-shell analysis, amplitude 
and phase terms can be separated by a ratio method, 
as discussed later.25,26  The two parameters, 
coordination number (CN) and Debye-Waller factor  
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Figure 5.  2-dimensional mapping, where 
white and red circles indicate the locations 
of the best and next best R2 points.  The 
white double arrowed line indicates the 
error range.  
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(s),  in the amplitude term are correlated strongly, 
while the bond length (r) and binding energy or 

photoelectron kinetic energy zero (E0) are correlated 
in the phase term.  2-dimensional (2D) mapping is 
performed to study the correlation problem, as 
shown in Figure 5. 
  In the 2D mapping, two parameters (CN and σ) are 
fixed and the others are optimized.  The two fixed 
parameters are varied to cover the 2D range for the 
R2 mapping, or R2 is plotted against the two fixed 
parameters.  The minimum corresponds to the best 
fit value.  Each R2 contour curve may be in an 
ellipse.  If the major and minor axes of the ellipse 
are parallel to the x- and y-axes, then the two 

parameters are independent. The axes are typically 
tilted and there is a correlation between the two 
parameters.  The error may be large if a large 
correlation is present.  The error can be evaluated 
using the contour curve.  The error bar in one 
parameter is express by the R2 less than a certain 
value, R2

1, as shown by the arrow at the color map in 
Figure 5.   If the 2D mapping is considered and a 
correlation is present, then the error is as indicated 
by the white line.  In addition, 2D mapping gives 
another local minimum near the solution, as shown 
in the circles in Figure 5.  The second best R2 value 

(red circle) is slightly larger than the best R2 value.  
The second best R2 could be a candidate for the true 
structure parameters.  In this case, the second best 
R2 is located near the best R2 within the error bar 
region, so that the second best is included in the error 
bar.  However, if it is located far away from the 
solution, the next local minimum may be missed, or 
even if it is determined, we do not know how to deal 
with that minimum, which has some possibility to 
correspond to the real structure.  In multi-shell 
fitting, the correlation becomes more complex and 
gives more local minima in the mapping. The 

coordination number and bond length are correlated 
through interference of the two shells.  The 

complex interdependence between parameters 
reduces the stability and reliability of the curve 

fitting.  The minimum R2 does not give the correct 
answer as in the case of the Fe foil measured at RT, 
where the coordination number in the second shell 
was too large.  The correlation between parameters 
is a serious problem and makes curve fitting useless, 
especially for a complex multi-shell system because 
the number of fitting parameters, p, becomes large 

and n-p becomes small.  This point will be 
discussed in a thorough search analysis in Section 4-
1.  The correlation problem would be less serious if 
EXAFS spectrum could be measured up to a large k-
range, as shown in Figure 4. 

  In summary, the correlation problem is the most 
serious for multi-shell analysis, and thus requires 

many parameters and the value of n-p becomes small.  
As a result, fitting becomes unreliable.  This is the 
fundamental problem in curve fitting analysis.    
3-4.  Initial parameter dependence 
  In relation to multi-shell fitting, we should 
consider the initial parameter effect on the curve 
fitting results.  Non-linear least squares curve 
fitting analysis requires initial parameters, from 
which the algorithm begins to reduce R2 efficiently.  
Once the minimum R2 is determined in the fitting 

process, the parameters are trapped at that minimum 
and it is difficult to escape that minimum to search 
for another possible minimum.  The fitting result 
could be trapped at a wrong or meaningless local 
minimum, and thus it is necessary to change the 
initial parameters to confirm that the obtained 
minimum is not due to a local minimum but the 
global minimum, or to search for other possible 
structures.  It is not a serious problem for a simple 
system with one coordination shell present and a 
symmetric distribution.  The fitting results often 
give the global minimum because the function R2(𝒫) 

has a single minimum.  However, a serious 
problem arises for a complicated system where 
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multi-shell fitting is necessary.  In this case, the 
parameter dependence of R2 becomes small or Bij in 

Eq. (8) is small, so that the shape of R2 becomes 
broad and a tiny perturbation can easily change the 
R2 minimum position.  Moreover, the correlation 
between the parameters may give a physically 
unreasonable minimum.  Kido et al. demonstrated 
that a curve fitting analysis of MoO3 gave three 
possible structures with good R2 values by changing 
the initial curve fitting parameters, as shown in Table 
3.21  We cannot say which is better from only the R2 
comparison, because the difference in R2 is not large.  
Other characterization methods must thus be used to 
determine which is the most probable model.  In 

addition, we cannot find other possible structure 
candidates by only a random selection of initial 
parameters.   
Table 3.  Curve fitting results for Mo K-edge 
EXAFS of 𝛂-MoO3 with different initial 
parameters. 

 Initial Best Initial Best Initial Best 

r1 0.170 0.169 0.170 0.167 0.170 0.165 

r2 0.196 0.198 0.170 0.172 0.170 0.175 

r3 0.200 0.198 0.191 0.188 0.194 0.195 

r4 0.225 0.227 0.196 0.198 0.194 0.195 

r5 0.230 0.227 0.198 0.198 0.230 0.226 

r6 0.234 0.232 0.223 0.227 0.230 0.235 

R2  0.028  0.033  0.025 

 
 
In this context, it should be noted that curve fitting 
does not always distinguish the coordinating element 
correctly based on R2.  We always assume the 
coordinating element first and calculate the 
backscattering amplitude and phase shift for that 

element.  Even if we assume a different scattering 
atom, rather good fitting results can be obtained.  
Figure 6 shows the curve fitting results for K2PtCl4.  
Good fitting results can be obtained if we assume Cl 
as the first nearest neighbor.  The Pt-Cl distance is 

0.232 nm, which corresponds well to the reported 
value of 0.231 nm.27  However, if O or Fe are 

assumed as the scattering atoms, then good fitting 
results with bond lengths of 0.242 nm and 0.244 nm, 
respectively, can be obtained.  The fitting results 
for Pt-O and Pt-Fe are unusual due to the 
abnormality in fitting parameters such as the bond 
length, Debye-Waller factor and E0.  The Pt-O bond 
length is typically found to be less than 0.220 nm in 
the reference compounds and the Debye-Waller 
factor for Pt-O is too small.  In the same way, the 
Pt-Fe bond length should be 0.250-0.260 nm.  This 
example indicates that care should be taken with the 
coordinating element, even if R2 gives a better fitting 

result.   

 
  In summary, care must be taken to select the initial 
parameters before the curve fitting analysis is started.  
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Figure 6. Curve fitting results for Pt L3-
edge EXAFS spectra for K2PtCl4 
assuming different coordinating atoms; 
a) Pt-O, b) Pt-Fe, and c) Pt-Cl. 
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Moreover, attention should be paid to the fitting 
results with a comparison to the known data for the 

material to confirm that the obtained results are 
reasonable.  Sometimes the validity of the results 
must also be checked using other characterization 
methods. 
 
Table 4.  Curve fitting results for K2PtCl4 
with different coordination atoms 

 CN r / nm s / 0.1 
nm 

E0 / 
eV 

R2 
 

O 8.2 0.243 0.000 -1.5 0.06 
Fe 2.4 0.244 0.030 -26 0.02 
Cl 3.1 0.232 0.018 9.8 0.03 

 
 
3-5.  Error estimation 

As discussed earlier, error estimation would be 
possible if χ6  could be determined more exactly.  
The problem was how to estimate the error for each 

data point, ε�6	.  R2 does not have an appropriate 
value to indicate that it is a sufficiently good fit or 
not. 

Here, we propose the Hamilton test for error 
estimation using R2.  The Hamilton test may be an 
approach to use R2 efficiently. 
 
3-6.  Hamilton test 

  We have stated that c2 is better than R2; however, 
the difficulty in error estimation prevents the use of 

c2.  The solution to this dilemma is to use the 
Hamilton test.28  The Hamilton test uses an F-test.  
Hamilton proposed the method in 1965 for the 
analysis of diffraction data, where R2 is used to 
estimate the goodness of fit.  If R2 is approximately 

distributed in a c2-like way, then the ratio of R2‘s of 
two models exhibits an F-distribution.  This 
assumption can be rationalized if the error for each 

data point 𝜀O6 , is constant.  The superiority of 
model A over model B can be determined from the 

R2 ratio of the two models.  The error in the fitting 
parameters can be estimated in the same way.  The 

shape of an F-distribution is dependent on n-p, 
difference between the number of data points and the 
number of parameters; therefore, the Hamilton test 
can judge the appropriate number of fitting 
parameters as described in section 3-6-3. 

First we show the procedure used in the 
Hamilton test.  The Hamilton test requires R2 for 

both model A and model B, which are given as 𝑅�6  
and 𝑅�6, respectively.  𝜈	is the number of data, and 
pA and pB are the numbers of fitting parameters to 
obtain models A and B, respectively.  Also, b is the 
increase in the number of parameters in model A 

from model B or 
𝑏 = 𝑝� − 𝑝�. 

(9) 
    
The R2 ratio is defined as  

R2 = 𝑅�6/𝑅�6, 

(10) 
F= (ν − 𝑝�)(R2-1)/b follows an F-distribution with 

two degrees of freedoms, b and ν − 𝑝�	 .  The 
important concept is the significance level, which is 
the probability of whether the null hypothesis can be 
rejected or not.  For example, when model A has 

better fitting results than model B, the point we want 
to claim is that model A is better than model B.  The 
null hypothesis is defined as “Model B can 
reproduce the EXAFS as well as model A”.  The 
significance level is set at 5%.  R2 and F are 

calculated first using 𝑅�,6 	𝑅�6, 𝑏, and ν − 𝑝�.  The 

occurrence probability for the null hypothesis is 
calculated from the F-distribution.  If the 
occurrence probability is more than the 5% 
significance level,  we cannot reject the null 
hypothesis.  But if it is less than 5%, we can reject 
the null hypothesis and can safely say that model A 

is superior to model B.  If the error is estimated by 

one s of a Gaussian distribution, then the 
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significance level is 32%.  The Hamilton test can 
then be used to conduct an error estimation and 

compare two models using R2 as shown next. 
3-6-1.  Error estimation   

Here we present examples of error estimation 
using the Hamilton method.  The value of RA

2 for 
the best fit is 0.05 with four fitting parameters.  The 
fitting range and Fourier transform range are 30-160 
nm-1 and the inverse Fourier transform range in r-
space is 0.1-0.2 nm.  The best fit bond length is 
0.200 nm.  When the bond length is fixed at 0.201 
nm and the best fit is obtained with the other three 
parameters optimized, this corresponds to model B 
where one parameter is fixed.  If RB

2 = 0.055, 
then,R2 is 1.1, ν = 2Δ𝑘Δ𝑟/π + 2 = 2× (160 −

30) × (0.200 − 0.100)/π + 2	 ≈ 10.3 ≈ 10,	 
𝑝�=4, and b=pA-pB=1.  The null hypothesis is that 
RB

2 is the same as RA
2.  The null hypothesis cannot 

be rejected at the probability of 75%, which is more 
than 32%.  When the bond length is fixed at 0.203 
nm and we obtain RB

2 = 0.09, the same hypothesis is 
rejected at the 32% significance level, since the 
occurrence probability of the null hypothesis is 
31.8 % less than 32 %.  We can say the error should 
be 0.003 nm.    
3-6-2.  Determining the number of fitting 

parameters 
We cannot obtain a meaningful result when pA is 

more than ν.	  If ν − 𝑝� > 0 is satisfied, then it is 
allowable to fit the multi-shell data with model A 
using 𝑝�  parameters. We have a one-shell fitting 
result using model B.  We want to demonstrate that 
model A is superior to model B.  The goodness of 
fit for model B is 0.05 (RB

2) with the four (𝑝�) fitting 
parameters, and then two-shell fitting is performed 

based on model A, where a total of 𝑝�＝8 
parameters are used.  The best fitting for eight 
parameters (model A) is 0.01 (R2

A). The fitting range 

and inverse Fourier transform range are the same and 
ν = 10.3, which gives R2 =5.0, b=4 and ν − 𝑝� =

2 .  The null hypothesis is that the two fitting 
models are identical.  In the Hamilton test, the 

occurrence probability is calculated to be 36%, and 

model B cannot be rejected at the one s  level.  If 
the Fourier transform range is increased to ∆𝑘 =190 
nm-1, and ν − 𝑝� ≈ 4 , then the occurrence 
probability is 10.4% less than the 32% significance 
level.  Consequently, fitting using two shells can be 
improved if we use the wide k-range of 30-190 nm-1 
while 30-150 nm-1 is still small, and we cannot say 
that two-shell fitting is better than one-shell fitting.   
3-6-3.  Comparison of model structure. 

Model A assumes an M-A bond and model B 
assumes an M-B bond with RA

2= 0.01 and RB
2=0.016, 

respectively.  Can we say that model A is better 
than model B?  The k-range and the inverse Fourier 
transform range are 100 nm-1 and 0.1 nm, 
respectively. 𝑝� 	= 4	, 𝑝� 	= 4 , ν − 𝑝� 	≈ 8	 and 
b=pB=4, so that R2 =1.6.  The null hypothesis is 

“the goodness of fit for model B is equivalent to that 
for model A”.  The occurrence probability is 38%, 
so that it cannot be rejected at a significance level of 
32%.  On the other hand, if R2

B=0.02, then the 
occurrence probability is 19%, so that model B can 

be rejected at a significance level of 32% (or one s 
in the Gaussian distribution).  In the case of PtCl4 

discussed previously, Pt-Cl, Pt-O and Pt-Fe gave R2 

= 0.03, 0.06 and 0.02, respectively.  n-pA and b 
were 5 and 4, respectively, for the three analyses.  
The result for Pt-Fe is the best fit value.  The 
hypothesis is “the result for Pt-Cl(O) has the same 
goodness of fi as that for Pt-Fe”.  The occurrence 
probability for Pt-Cl is 69% >32%, while the 
occurrence probability for null hypothesis for Pt-O 
is 20 % and can be rejected at the 32% significance 
level. The Pt-O coordination can be rejected from an 
EXAFS perspective.  However, this does not mean 
that Pt-Fe and Pt-Cl are the only candidates.  There 

are possibilities that another model gives a lower R2 
and is a valid model. 
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3-7.  Asymmetric distributions 
  The curve fitting method assumes the radial 

distribution function to be Gaussian or symmetric.  
Therefore, an asymmetric distributed system with a 
large static disorder cannot be analyzed by curve 
fitting using Eq. (1).  One approach is to use an 
asymmetric distribution function to include the 
effect of asymmetry.  The coordination number 
multiplied by the Debye-Waller factor term 

𝐶𝑁eV6����  can be replaced with the distribution 
function, 𝑔)(𝑟):5,29,30 

𝜒(𝑘) =&�𝑔)(𝑟)𝐹)(𝑘)𝑒.V6u�/��4 sin  2𝑘𝑟)

+ 𝜙¡(𝑘)¢ /𝑘𝑟)6 𝑑𝑟  

(11)  
where j indicates the j-th element (O, C, N, Fe, etc.).  
If a single shell and the following asymmetric 
function are assumed, then: 

𝑔(𝑟) £= 𝐴(𝑟 − 𝑟I)6𝑒V�(uVu¥)		𝑟 ≥ 𝑟I
= 0																	𝑟 ≤ 𝑟I

				. 

(12)  
𝑔(𝑟) has a sharp rise and a gentle descent, as shown 

in Figure 7.  𝑔(𝑟) has a peak at 𝑟 = 𝑟I +
�
6
.  If 

the 𝐹)(𝑘)𝑒.V6u�/��4/𝑟)6  and 𝜙¡(𝑘)  terms can be 
neglected and χ(𝑘)	is simply expressed as 𝑘χ(𝑘) =

∫𝑔(𝑟)sin2𝑘𝑟𝑑𝑟, then  

𝑘χ(𝑘) =
𝐴𝐵6

(B6 + 4𝑘6)r
[𝐵(𝐵6 − 12𝑘6) sin(2𝑘𝑟I)

+ 2𝑘(3𝐵6 − 4𝑘6)cos	(2𝑘𝑟I)] 
(13) 

 
Figure 7 (b) shows the Fourier transform of Eq. 
(13).  The black curve is obtained by the Fourier 
transform of Eq. (13) in the k-range of 0–150 nm-1.  
The asymmetry of the original function is well 
reproduced.  The red broken line in Figure 7 (b) is 

the Fourier transform of Eq. (13) over the k-range 
of 30-150 nm-1.  The low-k region is typically cut 

off in an EXAFS analysis because this region 
includes the effects of edge and multiple scattering, 

which make the EXAFS analysis complicated.  
The red broken line has a smaller peak and is 
shifted to the lower r direction because of the 
asymmetric distribution and low k-region cut off.  

In the asymmetric distribution, the oscillation c(k) 
is composed of many components with different 
wavelengths that are dependent on the bond length, 
r.  The steep rise in the radial distribution function 
gives a larger contribution than the gentle descent 
where oscillations with various wavelengths 
destructively interfere with each other, so that the 
EXAFS oscillations are damped quickly in the low-

k range.  The Fourier transform thus reflects the 
steeply rising part of the radial distribution curve 
more strongly than the gently descending part when 
the low-k region is cut off.  The amplitude 
decreases and the peak position is shifted to the 
lower direction.  Moreover, the Fourier transform 
becomes rather symmetric.  Figure 7(c) shows the 
normalized Fourier transforms where the peak of 
the two Fourier transforms coincide with different 
Fourier transform ranges to show the asymmetric 
distribution effects more clearly.  The Fourier 
transform (red broken line) over k=30-150 nm-1 is 

multiplied by 2.95 and shifted by 0.0052 nm for 
ease of comparison.  The Fourier transform peak 
over 30-150 nm-1 has a more symmetric structure 
than that over the range of 0-150 nm-1.  The 
asymmetry distribution effect can be expressed by a 
model radial distribution function; however, the 
model distribution is not so useful analytically.  If 
the asymmetric distribution is not so large, then the 
cumulant expansion method can be applied: 
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< 𝑒O6�(uV�) >	= �𝑃(𝑟)𝑒O6�u𝑑𝑟 

= 𝑒V°±O², 
(14) 

𝑊+ 𝑖𝜙 = ∑ 	(2𝑖𝑘)P/𝑛!µ
P¶I 	𝐶P, 

(15) 

𝑊 = ln   �u�¸(�)
¹º»¥

�¼(�)
¢ = 𝐶I − 𝐶6(2𝑘)6/2! +

𝐶½(2𝑘)½/4! + ⋯, 
(16)  

 

𝜙 = 𝜙I + 2𝑘𝐶W − 𝐶r(2𝑘)r/3! + 𝐶¾(2𝑘)¾/5! +⋯ .  
(17) 

 

In the cumulant expansion, if the distribution is 
Gaussian shaped, then 𝐶W = 𝑟  and 𝐶6 = σ6  and 
𝐶P = 0; 		𝑛 ≥ 3. 
 If the radial distribution function is expressed as Eq. 

(12), then  𝐶À(ÀÁW) =
r(PVW)!
�Â

. 

If the asymmetry is not large and the cumulant 
expansion converges rapidly, then the EXAFS 
oscillation can be expressed with CÀ	(𝑛 ≤ 	4), as  

𝜒(𝑘) =&𝐶𝑁)𝐹)(𝑘)exp.−2𝑟)/λ¡4	 

	exp Ã−2σ¡6𝑘6 	−
2
3𝐶½𝑘

½Ä 

sin Ã2𝑘𝑟) + 𝜙)(𝑘) −
4
3𝐶r𝑘

rÄ/𝑘𝑟)6 

(18) 
 
Although C3 and C4 can be determined by the curve 
fitting method, it is better to use the ratio method 
proposed by Bunker25 and Yokoyama26 to determine 
them more easily and accurately.  In the ratio 
method, the amplitude term and the phase term can 
be separated using an inverse Fourier transform.  
Once the amplitude term and phase term are 

separated, the data can be fitted using the following 
equations derived from Eqs. (16) and (17): 
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Figure 7. (a) Asymmetric function given 
by Eq. (9) (A=100, B=10) and (b) the 
Fourier transforms of Eq. (10) with 
different k-ranges; the black solid line 
is for k=30-150 nm-1, and the red dotted 
line is for k=30-150 nm-1. (c) Normalized 
Fourier transforms of (b).  Two peaks 
are normalized by the peak height to be 
unity. 
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ln Å
𝐴O(𝑘)
𝐴Æ(𝑘)

Ç = ln Ã
𝐶𝑁O
𝐶𝑁Æ

Ä + ln	 È
𝑟Æ6

𝑟O6
É

− 2.𝜎O6 − 𝜎Æ64𝑘6 	−
2
3 (𝐶½.O	

− 𝐶½,Æ)𝑘½	 
(19) 

 

𝜙O − 𝜙Æ = 2𝑘(𝑟O − 𝑟Æ) −
½
r
(𝐶r.O − 𝐶r.Æ)𝑘r, 

(20) 
where subscripts i and s indicate the unknown 
compound and standard, respectively.  In this ratio 
method, the transferability of the amplitude and 

phase shift functions for the same atomic pair are 

presumed.  When ln Ê��(�)
�Ë(�)

Ì	 is plotted against 

𝑘6	as shown in Fig.8(a),  the y-intercept of Eq. (19) 
corresponds to the coordination number ratio and the 
slope corresponds to the Debye-Waller factor 
difference.  The second-order term corresponds to 
the 	𝐶½  parameters.  Similarly, (𝜙O − 𝜙Æ)	  is 
plotted against k shown in Figure 8(b), where the 
slope corresponds to the bond length and the 𝐶r 
difference is given in the second order term.  
However, this ratio method cannot be applied to a 

system where the Fourier transform peak is 
composed of two or more inseparable coordination 
shells.  In this case, a nonlinear least-squares curve 
fitting analysis must be applied with C3 and C4 
parameters, so that the number of fitting parameters 
increases and the correlation problems become more 
serious.  The cumulant expansion method is 
sometimes less effective if two or more inseparable 
coordination shells are present.  

   

 

Figure 8.  The ratio method; (a) amplitude, 
and (b) phase difference.  
 

4.  Proposal for future analysis methods 
to overcome curve fitting problems. 
  Finally, we would like to propose methods to 
overcome the problems with curve fitting analysis, 
which we again summarize: 

1. Number of data points 
2. Goodness of fit 
3. Parameter correlations 
4. Initial parameter dependence 
5. Error estimation 
6. Asymmetric distribution 
We propose two methods to overcome these 
difficulties: a constrained thorough search and the 
reverse Monte Carlo method. 
 
4-1.  Constrained thorough search method 

In the curve fitting analysis, the observed data are 

analyzed using the EXAFS Eq.(1) by optimization of 

the fitting parameters.  Parameters are adjusted in the 
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parameter space to minimize R2.  This parameter 

space is a multidimensional metric space that consists 

of structural parameters such as CN, E0, r, and σ2, each 

of which correspond to one axis in the parameter space, 

i.e., the dimensionality of the structural parameter 

space is equal to the number of structural parameters.  

A set of structural parameters is represented by a point 

𝓟  with components of (CN, E0, r, and σ2) in the 

parameter space.  The point 𝓟 provides the EXAFS 

oscillation χabc(𝑘,𝓟)  and its unique 𝑅6 .  This 

parameter space has a function, 𝑅6 = 𝑓(	𝓟) =
∑(χabc(𝑘) − χdef)6/∑(χdef)6.   In the curve fitting 

analysis, the initial point 𝓟0 is given first near the 

solution and then 	𝑅6 is optimized, searching for the 

final point 𝓟Î	 with the lowest R2.  If ν − 𝑝	is small, 

then the gradient of 𝑅6 = 𝑓(	𝓟) is not steep and the 

shape of the 𝑓(	𝓟)	  function around the minimum, 

𝓟Î, becomes broad.  𝓟Î may have a large error bar 

or the other points may be the real solutions.  However, 

we do not know the exact shape of 𝑓(	𝓟), only by the 

curve fitting analysis.   

In contrast, in the constrained thorough search 

analysis, all points 𝓟  are thoroughly surveyed to 

produce the entire p-dimensional R2 map, where p is the 

number of parameters.  We may find positions of 

minimum R2 and we understand the shape of the R2 

distribution around the minimum, 𝓟Î.  If the shape of 

𝑓(	𝓟)  is sharp, then the curve fitting analysis is 

reliable and gives only a small error.  However, if it is 

not sharp, or if several local minima are determined in 

addition to 𝓟Î, then the fitting process is unreliable or 

the possibility of other solutions exists.  Kido et al. 

proposed a simple estimation of the results and errors 

using the constrained thorough search method.21  The 

occurrence probability is related to R2 for each 

parameter.  Exact estimation of the occurrence 

probability is difficult, as discussed previously, using 

only R2.  Another approach that can be applied is the 

F-test to obtain the relative occurrence probability 

compared to the minimum, and the occurrence 

probability can then be summed over the entire 

parameter space, which requires another large number 

of calculations.  They suggested that the occurrence 

probability is unity when the result gives R2 less than a 

certain threshold R2c.  If R2c is sufficiently small and 

the assumption that all 𝓟’s have the same occurrence 

probability, the result can then be equally represented 

by averages of the parameters.  Kido et al. drew 

histograms for each parameter; the histogram is a 

projection of the R2 map onto the parameter axis.  

They approximated the histogram for each parameter, 

CN, r, E0 or s, by a Gaussian function.  The Gaussian 

peak position was almost the same as the average value 

for each parameter, and the width of the Gaussian peak 

was treated as the error. 

The confined thorough search requires a 

tremendous number of calculations.  The number of 

parameters is p and one of them is pA.  If the survey 

range is Δ𝑝� for parameter pA, and its survey step is 

δ𝑝�, then the total number of fitting parameters can be 

expressed as ∏ 𝑁ÐÑ
i
� , where 𝑁ÐÑ =Δ𝑝�/𝛿𝑝�.   

The advantage is to overcome the initial parameter 

dependence problem to avoid trapping at meaningless 

local minima.  The constrained thorough search 

method can give several possible candidates for 

structures that have identically small R2 values, which 

are all possible candidates.  How can we treat these 

local minima?  Kido et al. proposed the domain-

averaging method.21  They defined the domain 

around the possible structures and could determine 

possible structure candidates for different domains.  

The peak position and the width of the Gaussian 

distribution can correspond to the estimated value of 

the parameter, and the error or precision of the 

parameter in each domain.  How can we determine 

which structure is better than the others?  The 

domain with the smallest R2 may not be a good 

criterion when the difference in R2 for each domain is 

not large.  We thus rely on other methods or 

knowledge regarding the system.  Kido et al. 
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proposed that the use of bond valence theory31 was 

effective to select one good result.  Curve fitting 

analysis can also provide candidate structures by 

changing the initial parameters.  However, it is 

unclear if these sets of candidate structures are unique 

and that there are no more possibilities in parameter 

space from the curve fitting method. The thorough 

search method can guarantee that the obtained sets of 

structures are unique and no more structures are 

possible, because the entire space has been surveyed.    

The thorough search method in itself cannot 

overcome the limitation of the number of data points.  

It is possible to perform the thorough search method 

with the number of parameters p, or a dimension of 

parameter space that intentionally exceeds ν.  Kido et 

al. showed that the distributions of the fitting 

parameters with R2 less than R2c became wider and non-

Gaussian when p exceeded n.  The obtained 

parameters were thus less meaningful.  Therefore, the 

thorough search method cannot overcome the 

limitation of the number of data points, and it is 

important to reduce the number of dimensions or the 

number of fitting parameters.  Kido et al. proposed a 

“constrained” thorough search method where the 

number of fitting parameters was reduced by 

establishing a relationship between the fitting 

parameters.21  For example, the Debye-Waller factor 

can be expressed as a function of bond length because 

both parameters are related to the bond strength.  A 

linear relation between the bond length and Debye-

Waller factor was used to conduct the thorough search 

processes. 

 The number of calculations in the thorough search 

method is dependent on the search range 	Δ𝑝�, and the 

search step, δ𝑝� .  A larger Δ𝑝�	 and smaller δ𝑝� 

are preferable to obtain precise and accurate solutions 

for the pA parameter.  Kido et al. proposed that a two 

steps calculation method, i.e., analysis first using a 

wide range with a rough search step followed by a 

limited range with a fine search.  Once some 

candidate domains were determined, they limited the 

search region to each domain with a better resolution.  

Sets of parameters were selected that gave R2 less than 

a certain value.  The sets of parameters made a 

domain.  Finally, the averages of each parameter after 

the fine search were obtained using a histogram fitted 

with a Gaussian for each domain, and this was termed 

the domain averaging method.  Finally, the 

constrained thorough search analysis would identify all 

possible structures.   

The thorough search analysis requires higher cost 
(time and machine power) than curve fitting analysis.  
However, the constrained thorough search method 
and the two-step analysis save much cost and the 

calculations can be performed within a reasonable 
time scale, even using a desktop PC (CPU=Intel® 
CoreTM i7).  Further development in hardware 
computing speeds and effective data mining 
software are expected to make the constrained 
thorough search method a standard analysis 
technique for EXAFS in the future. 

 
4-2.  Reverse Monte Carlo method 
  Monte Carlo simulation is named after the town 
named Monte Carlo in Monaco, famous for its 
casinos.  Monte Carlo simulation is based on a 

random walk to obtain stable complex structures by 
minimizing the energy of the system.  The energy 
𝐸I  is calculated with one structure.  The atomic 
positions are then randomly moved and the energy 
of the new structure 𝐸W, is calculated.  When the 
energy becomes smaller than the previous value, the 
new structure is accepted and the structure is then 
moved again from the new structure.  On the other 
hand, when the energy becomes larger than the 
previous value, the new structure is accepted with a 
probability proportional to exp(−(𝐸W − 𝐸I)𝛽) , 
which is called the Metropolis method.  β  is 

inversely proportional to the temperature: β =
1/𝑘�𝑇 (where kB is the Boltzmann constant).  If 



 

Acc. Mater. Surf. Res. 2020, Vol.5 No.4, 148-170. 165 

the new structure is rejected, then the atom positions 
are returned to the previous positions, which is the 

starting point for another new random walk.  The 
system will reach a stable state or no further change 
will occur in the energy.  This corresponds to the 

equilibrium at b.  The structure at this equilibrium 
corresponds to the stable structure for the given 
system. 

Reverse Monte Carlo (RMC) simulation uses the 
degree of fit 𝑅6	,	 instead of energy, E.32-34  RMC 
has been used for the analysis of X-ray and neutron 
scattering data where medium-range interactions are 
important.  First, a large number of atoms are 
prepared in a large box (referred to as a cell) and 

𝑅I6	is then calculated for the initial atom positions in 
the large cell.  The number of atoms in the box is 
more than 102-103.  After the random walk, the new 

𝑅W6	 is calculated for the new model.  If 𝑅W6 < 𝑅I6, 
then the new model is accepted for the next trial.  

Even if 𝑅W6 > 𝑅I6, the new model is accepted with a 
probability of exp(−(𝑅W	6 − 𝑅I6)𝛽)	 , and the next 
calculation then starts.  The system reaches 
equilibrium when there is no further improvement in 
R2  after many cycles.  The structure at 
equilibrium is the final structure for this system.  
Thus, a large number of atoms are contained in a 

large cell where the atoms move with the calculation 
of X-ray or neutron scattering intensity and 
comparison with the experimental data.  The RMC 
method has been applied to EXAFS analysis.35-40  
In the case of EXAFS analysis, the nearest-
neighbour interactions are the most important, so 
that it is not necessary to calculate all of the atomic 
pairs in a large cell as shown by the arrows in Figure 
9(a).  Fujikawa et al. proposed a micro RMC (m-
RMC) method41 that, in principle, follows the 
conventional RMC procedure.  In m-RMC, a large 
cell is divided into independent replica files, each of 

which includes a small chemical species such as a 
molecule, a metal complex, or a metal cluster, as 

shown in Figure 9(b).  The initial model structure 

in each replica file is assumed, and the m-RNC 
method is then performed using the set of replica 
files.   

  
Many replica files are prepared.  𝜒abc

O (𝑘) for the 
i-th file is calculated based on the structure in each 
replica file.  For a molecule, the central atom is 
regarded as an X-ray absorbing atom and the 
others are treated as scattering atoms.  In a metal 
cluster that has several absorbing atoms, for 
example in a Au cluster, all Au atoms in the cluster 
are simultaneously both absorbers and scatterers.  
𝜒abc
O (𝑘) in the replica file is obtained using Eq.(1).  

The 𝜒abc
O (𝑘)  values are averaged over all the 

absorbing atoms in the replica files to obtain the 
averaged 𝜒abc(𝑘) .  The averaged 𝜒abc(𝑘)  is 
then compared with χdef(𝑘)  to estimate the 
goodness of fit, 𝑅6.  To avoid being trapped at a 
local minimum and to decrease the calculation 
time, b is first set to a large value of approximately 
102.  b is then gradually decreased to obtain an 
accept/reject ratio of almost unity.  After 104–105 
steps of cycles, R2 reaches equilibrium, as shown 
in Figure 10.  The radial distribution function can 
be calculated using all replica files, as shown in 
Figure 11.  The cumulant coefficients from the 

Figure 9.  Calculated cells in (a) reverse 
Monte Carlo (RMC) and (b) micro-reverse 
Monte Carlo (m-RMC) methods.  

  

Replica files 

(a) 

(b) 
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final configurations are given by the following 
equations: 

 

𝑟 = (𝐶W) =< 𝑟 >, 

𝐶6 	=	< (𝑟 − �̅�)6 >, and 

𝐶r =	< (𝑟 − �̅�)r >	 

(21) 

 

 
Figure 12 shows the results of a Au L3-edge EXAFS 
analysis of Au foil by the m-RMC method.  The 

first peak in the Fourier transform data for Au foil 
was analyzed after the inverse Fourier transform.  
The initial parameters gave ill-fitting results.  R2 
rapidly decreased at the first calculation and then it 
gradually decreased, as shown in Figure 10.  After 
approximately 100000 iterations, the fit became 

much better, as shown in Figure 12(b).  b was 
modified with R2; b was first selected as 1×104 
when R2 > 10-4. When the R2 became less than 10-4, 

b was set to 105.  In a complex case, b should 
sometimes be reduced to escape the minimum.  
Fujikawa et al. showed that 10 files were necessary 

to obtain good R2 results.41  More than 100 replica 
files were sufficient to give a stable structure.  The 
results are obtained as <r>=0.287 nm, 

√	< 𝜎6 >=0.00914 nm, and <C3>= 9×10-7 nm3.  A 
very small peak appeared around 0.330 nm, as 
shown in the inset of Figure 11; this was negligibly 
small but always appeared.  The R2 difference with 
and without the small peak was very small; therefore, 
it was considered to be a type of unremovable noise.  
However, it was possible to remove such noise peaks 
by setting a higher limit for the bond length. 

 
Figure 10. Change in R2 as function of 
number of repetitions.  
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Figure 11. Radial distribution 
function for Au foil obtained from 
m-RMC analysis. 
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Figure 12. EXAFS analysis by m-RMC 
method; (a) before starting m-RMC 
calculation, and (b) after R2 reached 
equilibrium. 
  
In the m-RMC method, the total R2 is reduced during 

the repetition.  This does not mean that c(k) for 
each replica file necessarily follows cobs(k), giving a 
small R2, i.e., each replica file does not necessarily 
represent the real molecular structure.  Only the 
final radial distribution curve can reproduce the 
EXAFS oscillation.  For example, the real 
molecular structure is MO(L)2O(S)2, where two 
types of oxygen atoms are coordinated.  One type, 
O(S), is the oxygen with a short bond length, while 

the other type of O(L) has a larger bond length.  
The total ratio of O(S) to O(L) is 1.  The m-RMC 

method can give two solutions.  One is 
MO(S)2O(L)2 or the structure with two short and 

long O atoms coordinated at the same time.  The 
other is a mixture of the two types of molecular 
structures, each of which is composed either of the 
MO(S)4 or MO(L)4 structure, and each type is 
present with a 1:1 ratio.  Both give the same 

averaged 𝜒abc(𝑘).  We cannot distinguish which is 
the real structure from only the EXAFS.  Other 
characterization information is thus required to reach 
a conclusion. 

 In the case of MoO3 analysis, the m-RMC method 

can provide the distribution function, as shown in 

Figure 13.  Three peaks that correspond to two short 

Mo=O, two medium length Mo-O and two long Mo-O 

bonds are identified.  Note that it is not necessary to 

select the correct initial parameters.  In addition to 

Mo-O, the Mo-Mo bonds in the higher shells can be 

analyzed.41  Compared to the constrained thorough 

search method, the resolution of m-RMC is not so good, 

because the two short bonds in m-RMC analysis cannot 

be distinguished, although they can with the confined 

thorough search.    

 

 

 

 

The m-RMC method can include an asymmetric 

distribution.  Regulations of multi-edge analysis are 

automatically included.  For example, the A-B bond 
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Figure 13.  Radial distribution histogram for 
MoO3 obtained by m-RMC method. 
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length must be the same when it is observed from edge 

A or from edge B because the same cluster structure is 

used for the analysis of both edges; therefore, the A-B 

bond length is always the same.  The m-RMC method 

is a promising analysis technique, even if the resolution 

is not as good as curve fitting or the constrained 

thorough search method.    

 

5.  Conclusions. 

  We have reviewed EXAFS analysis, especially curve 

fitting analysis.  In a simple system where one type of 

bond is involved in the EXAFS spectrum, the curve 

fitting analysis provides good results with little errors.  

However, for a complicated or asymmetric system, 

curve fitting analysis encounters several problems:  

1. Number of data points 
2. Goodness of fit 
3. Parameter correlations 
4. Initial parameter dependence 
5. Error estimation 
6. Asymmetric distribution 
The goodness of fit and error estimation can be 

overcome through the use of R2 and the Hamilton test.  

We have proposed solutions for the other problems.  

The constrained thorough search method can solve the 

initial parameter dependence and partly address 

correlation problems.  The RMC or m-RMC methods 

can address the initial parameter, the correlation and the 

asymmetric distribution problems.  The number of 

data points is limited in EXAFS analysis; therefore, 

EXAFS measurements at low temperature are 

preferable to increase the number of data points.  If 

polarization dependence can be applied to systems that 

involve impurities in a crystalline material or metal 

species adsorbed on a single crystal surface, then the 

number of data points is increased.42  Multi-edge 

analysis is also useful.19  Another possibility to 

increase the number of data points is to combine the 

data obtained from other methods such as Raman 

spectroscopy, transmission electron microscopy (TEM), 

X-ray diffraction (XRD) and density functional theory 

(DFT).  However, it may not be so easy to include 

such information directly in curve fitting analysis.  On 

the other hand, the m-RMC method can use such data 

directly because the real structure model can be shared 

by the other methods, so that calculated and observed 

data from the same sets of replica files can be compared 

for many characterizations.  The goodness of fit R2 

obtained from each characterization technique can be 

summed with appropriate weight. The summed R2 is 

used to find the minimum by randomly changing the 

common replica files in the Metropolis method.  In 

this sense, structure determination for the system can 

be increasingly improved to be more precise.  Even if 

EXAFS is just one characterization method, it is still a 

powerful technique in the analysis of non-crystalline 

materials under working conditions.  Combination 

with other characterization methods is thus expected to 

empower EXAFS spectroscopy for applications in 

material science.  
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