Accounts of Materials & Surface Research

High-performance Soft Materials Consisting of Colloidal Building Blocks

Yukikazu Takeoka

Department of Molecular & Macromolecular Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan ytakeoka1@mac.com

The properties of conventional solids vary greatly depending on the nature of the atoms and molecules that constitute the smallest unit of the solid, as well as on the ordered form of their arrangement. The author has been developing novel functional materials that reflect the properties of colloidal-sized compounds and the ordered state of their assemblies by forming assemblies of the colloidal building blocks (CBBs) such as polymers and microparticles as the smallest units by various methods. CBBs exhibiting various characteristics were prepared by precise synthetic methods, and aggregates of CBBs with various ordered structures were formed by using physical restrictions such as control of space, use of interfaces, and agitation methods.

The resulting assemblies or materials obtained by using the assemblies exhibit mechanical and optical properties that are not found in conventional svstems. In this author paper, the describes examples of soft materials composed of CBBs.

Keyword: colloidal building block, polymer, microparticle, assembly, soft material

Brief Personal History of Author

Yukikazu Takeoka received his Ph.D. in the field of electrochemistry from Sophia University under the supervision of Prof. Naoya Ogata (1996). Then, he joined Prof. Toyoichi Tanaka's research group at Massachusetts Institute of Technology with the Uehara Memorial Foundation for Postdoctoral Fellowships and worked on the phase transition of polymer gels and the synthesis of molecular recognition gels. In mid-1998, he moved to Yokohama National University, where he was a research associate. Since 2004, he has been an Associate Professor at Nagoya University. His research focuses on smart materials such as structural colored gels, high mecha biomaterials, and photonic band gap materials for optical and biological applications.

コロイダルビルディングブロック集合体からなる 機能性ソフトマテリアルの開発

竹岡敬和 *名古屋大学大学院工学研究科*

1. はじめに

一般的な固体の物性は、固体を構成する最 小単位となる原子や分子の性質と、その配列の 秩序形態に大きく依存する。著者らは、高分子 や微粒子などのコロイドサイズの化合物を最小 単位とした集合体を形成すれば、コロイドサイズ の化合物の特性とその集合体形成によって生じ る秩序形態に応じた機能を発現する新しい材 料が得られる(図 1) と考え、研究に取り組んで いる。1)高分子や微粒子などの、コロイドサイズ の化合物は、最近のツール化された精密合成 手法を採用することで、簡便かつ緻密に調製で きるようになってきた。得られたコロイドサイズの 化合物の集合体を形成させる際、空間の制御、 界面の利用、撹拌方法の工夫などの物理的な 制限を適用すると、同じコロイドサイズの化合物 を用いても、異なる様々な秩序形態を有する集 合体が得られることを明らかにした。その結果、 それらの集合体もしくは集合体を利用して構築 した材料は、コロイドサイズの化合物の特徴と集 合体の秩序状態を反映し、環境に応じた高速 刺激応答性、突然破壊を起こさない生体軟組

織特有の力学特性など、新奇な性質を発現す る機能性マテリアルになることを見出した。本稿 では、紙面が限られるため、主にソフトマテリア ルの研究結果について紹介する。

2. 特徴的構造を有する高分子が集合したソ フトマテリアル

高分子ゲルやエラストマーなどのソフトマテリ アルの物性を説明する際、従来の理論は、ソフ トマテリアルを構成する最小単位の物質を仮定 し、その集合体として扱う。例えば、ある決まっ た構造や分子量の高分子から構成されるソフト マテリアルなら、その巨視的な性質は、構成成 分となる高分子の振る舞いを基に解説する。し かし、従来のソフトマテリアルの調製に良く用い る方法では、低分子量のモノマーと架橋剤を溶 かした溶液に重合開始剤を加え、これらをラン ダムに反応させる。その結果得られる架橋網目 は、古典理論で考えるような最小単位の構成成 分から成る秩序だった構造とは異なり、無秩序 で不均一な状態にある。

著者らは、ソフトマテリアルの調製において、コ ロイドサイズの化合物を最小構成単位として予

Figure 1. Conceptual diagram of a functional soft material consisting of an assembly of colloidal building blocks.

反応速度が大きく異なる

Figure 2. Polymerization and addition reactions proceed with the same catalyst, but the reaction rates of the two reactions differ greatly.

め用意し、それらが形成する秩序構造を反映し たソフトマテリアルの研究に取り組んできた。例 えば、リビングラジカル重合やメタセシス重合な ど、高分子を精密に合成するために利用できる ツールとしての反応が多数開発されている。こ れらの反応を巧みに利用すれば、コロイダルビ ルディングブロック(CBB)として利用可能な高分 子が得られる。CBBを適切な条件において繋げ ることで、CBB としての高分子の構造、および、 その秩序構造を反映した性質を示す高分子ゲ ルやエラストマーを合成できる。¹⁾⁻⁹⁾著者が取り 組んできた、その代表的な手法を説明する。 必要な化合物を混合後、30 分以内で反応は終了し、分 子量分布の狭い望みの分子 量に近い高分子が得られる。 一方、ハロゲン化アルキル 基とアリル基との付加反応 も同じ触媒によって進行す るが、こちらの反応は先の 重合反応に比べると遅い反 応として生じる(図2右)。 著者らは、必要な化合物を 適切な条件で全て混合して おけば、両反応の反応速度

に差があるために、重合反応に次いで付加反 応が逐次的に進む結果、均一な網目構造を有 する架橋網目が得られる手法を見出した(図 3)。重合反応には、複数のハロゲン化アルキ ル基を有する開始剤を用いることで、鎖の本 数と長さが決まった星形高分子をCBBとして 調製する系を採用した。リビングラジカル重 合によりほぼ全てのモノマーが消費され、所 定の分子量を有する星形高分子が得られた 後に、予め混合しておいた複数のアリル基を 有する低分子化合物が星型高分子の末端と 付加反応することで架橋剤になる。この際、 反応条件下の溶媒の質は星型高分子にとっ ては良溶媒であり、さらに、星型高分子の濃

<u>2-1.速いリビングラジカル重合と遅い付加反応</u> <u>を組み合わせた均</u> <u>一網目を有するソ</u> フトマテリアルの **速い**リビングラジ

構築 3)

ハロゲン化アル キル基を開始剤に 用い、銅触媒を利用 することで、ビニル モノマーからない ら分子量分布が狭い 高間開発されてい る(図2左)。例え ば、 汚導体などは、

Acc. Mater. Surf. Res. 2022, Vol.7 No.4, 153-161.

度は高分子の重なり濃 度よりも高くなるよう に設定することが重要 になる。²⁾この条件によ って、星型高分子はお互 いに絡まないが、すし詰 め状態となることで秩 序形成し架橋剤と反応 し易くなり、均一な網目 構造を得やすくしてい る(ボンドパーコレーシ ョン条件)¹⁰⁾。その結果、 全ての化合物を混ぜた 後に一定温度にて放置 しておくだけで、比較 的均一な構造の架橋網

Figure 4. Two types of star-shaped polymer synthesis methods.

目を自動的に構築できることを明らかにした。

<u>2-2. 二種類の星型高分子合成法を組み合わ</u> <u>せた均一網目を有するソフトマテリアルの</u> 構築⁴⁾⁻⁷⁾

2-1 で用いた星型高分子の合成方法は、コ アーファースト法と呼ばれる(図4上)。コア ーファースト法で利用した重合反応のリビ ング性が高ければ、モノマーが消費された後 も、この重合反応は継続して進行できるので、 新たなモノマーを加えればさらに重合が進 む。例えば、最初に仕込んだモノマーが消費

された後に、ビニル基を複数 有するモノマー(架橋剤)を 添加すれば、星型高分子同士 が繋げられることで、均一な 網目構造も得られるように なる。この星型高分子間の架 橋反応は、リビングラジカル 重合で得られた直鎖状高分 子から星型高分子を合成す る手法(リンキング法と呼ば れる)(図4下)としても利 用されており、上述の付加反 応を利用した架橋反応より も、迅速で効率良く進行す る。著者は、コアーファースト法とリンキン グ法を組み合わせれば、反応容器に、必要な 化合物を所定時間に所定量を加えていくだ けで、均一な網目構造を有するソフトマテリ アルが短時間で合成できることを見出した (図 5)。この方法によって得られた架橋網目 と従来のフリーラジカル重合法で得られる 架橋網目からなるエラストマーの応力-歪み 曲線を測定すると、著者が開発した方法で得 られるエラストマーの方が伸長性は飛躍的 に大きくなる結果、破壊エネルギーも大幅に 増大し高靱性になることが分かった。⁴⁾つま り、同じ種類の高分子から構成される異なる

https://www.hyomen.org

網目構造の力学物性を比較す ることで、均一な網目構造の 効果を証明した。

重合反応のリビング性が高 ければ、最初に加えたモノマ ーが消費された後に他のモノ マーを加えることによってブ ロック共重合体の星型高分子 を効率良く合成することがで きる(図6)。例えば、水中、低 温で良く溶けて、高温で沈澱 する性質を示す *ト*イソプロピ

ルアクリルアミド(NIPA)からなる高分子と 水中で温度に関係なく良く溶けるジメチル アクリルアミド(DMA)からなる高分子のブロ ック共重合体の星型高分子を簡単に合成で きる(図 6)。^{5),7)}

NIPAのみからなる架橋網目は、低温で膨潤 し高温で収縮する変化を可逆に示すため、薬 の放出の制御や再生医療用基材としての利 用が検討されてきた。しかし、温度を急激に 上昇させると、架橋網目を構成する高分子の 相分離や、表面での緻密な層(スキン層)の 形成が生じる結果、架橋網目の収縮変化には 非常に長い時間を要する(図7上)。一方、NIPA とDMAのブロック共重合体からなる架橋網目 は、NIPAのみからなる架橋網目と同様に、低 温で膨潤し高温で収縮する変化を可逆に示 し、かつ、急激な温度上昇に伴う体積変化は、 相分離状態やスキン層形成が生じないこと で非常に迅速になることを明らかにした(図 7下)。^{5), 6)}

他にも、鎖状高分子から長さの揃った短い 高分子鎖が多数グラフト化したボトルブラ シポリマーなどをCBBに利用して集合化した ソフトマテリアルの開発も行っている。^{8),9)} ボトルブラシポリマーは、お互いに絡まなく、 排除体積効果が大きいため非常に希薄な濃 度で秩序構造を形成し、均一な網目形成が可 能であるなどの特徴があり、その特徴を反映 したソフトマテリアルが開発できることが 分かってきた。

Figure 6. Synthesis of star-shaped block copolymers by the corefirst method.

Figure 7. Stimuli-responsiveness exhibited by homogeneous polymer networks composed of block copolymers.

3. コロイド粒子が配列した複合化ソフトマテリアル

無機物質からなる粒径の揃ったコロイドサイズ の粒子をCBBとして適切な条件で高分子網目中に 分散させると、得られた複合化ソフトマテリアル 中では、CBBが秩序だった配置で固定された状態 になる。このような複合化ソフトマテリアルは、 コロイドサイズの粒子の秩序構造に由来する物 性を発現しうる。例えば、コロイドサイズの粒子 は、その大きさが紫外光や可視光の波長の長さに 近いことから、その秩序構造は、複合化ソフトマ テリアルの光学的機能の発現に結びつく。図8に、 粒径110 nmのシリカ微粒子をある液体中に濃度 を変えて分散させた懸濁液の写真(図8A) とその 一部のサンプルの透過率スペクトル(図8B)を示 す。シリカと用いた液体の屈折率は、可視光領域

Figure 8. Order formation of colloidal particles in suspension and their optical properties, A: Change in appearance of colloidal particle dispersions at different concentrations, B: Transmission spectra of samples shown in A, C: Schematic diagram showing order formation with changing concentration of colloidal particles.

で大きく異なるため、懸濁液に光を照射すると、 シリカ微粒子からは光が強く散乱される系であ る。しかし、分散させたシリカ微粒子の量が少な ければ、光の散乱強度は小さいため、懸濁液は無 色透明に近い(0.40 vol%)。シリカ微粒子の量を 増やすと、シリカ微粒子からの光の多重散乱が生 じることで、懸濁液は白濁する(9.5 vol%)。とこ ろが、さらにシリカ微粒子の量を増やすと、懸濁

液は再び透明になる(34 vol%)。この際、懸濁液中にお いて、シリカ微粒子はその濃 度の増大と共に秩序を形成し (図 8C)、各シリカ微粒子から 散乱された光が干渉して相殺 されることが透明化の原因で ある。著者らは、同様の現象 が、複合化ソフトマテリアル においても生じることで、光 学的に透明な複合化ソフトマ テリアルが得られることを見 出した。本稿では、ユニーク な光学物性と力学物性を発 現する複合化ソフトマテリ アルについて紹介する。

<u>3-1. 透明で高靱性なソフト</u> マテリアル^{10),14)}

上記の現象を利用すれば、 架橋網目と単分散なシリカ 微粒子から成る無色透明な 複合化エラストマーを合成 することができる。図9に 2-(2-methoxyethoxy)ethyl methacrylate (MEO₂MA)と少 量の架橋剤からなる架橋網 目をフリーラジカル重合に て架橋網目を調製する際に、 粒径 110 nm のシリカ微粒子 を CBB として濃厚分散(~34 vol%)させて得た複合化エラ ストマーの合成スキームを 示す(図9A)。この単分散なシ リカ微粒子の表面は、メタノ

ール中で長時間還流することで、表面を疎水化し た状態にしている。その結果、MEO₂MA 中に 40 vol% 以上分散できるようになる。原料となる MEO₂MA、 シリカ微粒子、および、MEO₂MA と架橋剤によって 得られた架橋網目(エラストマー)の可視光領域 における屈折率(図 9B)、および、得られた複合化 エラストマーの写真と電子顕微鏡像(図 9C) も示 す。この複合化エラストマー合成では、ラジカル

Figure 9. Transparent composite elastomer, A: Composite elastomer synthesis method, B: Wavelength dependence of refractive indices of compounds constituting the composite elastomer, C: Optical photograph of the resulting composite elastomer and electron microscope image showing its internal microstructure.

Figure 10. Composite elastomers exhibiting biocompatibility and mechanical properties specific to biological soft tissues, A: for PMEA, B: electron microscope image of a composite elastomer composed of PMEA and silica particles with a particle size of 110 nm, varying the concentration of silica particles, C: photograph of the resulting transparent composite elastomer and its stress Stress-strain curve of the resulting transparent composite elastomer, with different concentration of silica particles.

開始剤であるアゾビスイソブチロニトリル (AIBN)を用いたフリーラジカル重合のため、得ら れた架橋網目の構造は、網目のサイズなどの揃っ ていない無秩序な状態と考えられる。しかし。反 応溶液に分散させたシリカ微粒子は、その分散量 に応じて、懸濁液内で秩序だった配列状態になる 結果、重合によって網目が形成された後において も、その秩序構造を反映した状態になっている。 その結果、得られた複合化エラストマーも、無色 透明な状態として得られる。また、反応溶液中に 分散させるシリカ微粒子の量に応じて、得られた 複合化エラストマーの応力-歪み曲線で観測され る伸長性および破断応力が増大する結果、破壊エ ネルギーも大幅に増大し、高靱性化することを見 出した。11), 12)シリカ微粒子の周りには、柔らかい マトリックスとして振る舞う PMEA 架橋体に比べ て高い弾性率値を持つ傾斜層(界面傾斜層)が約 15 nmの厚さで存在することが、原子間力顕微鏡 による弾性率マッピング像から分かった。12)この

界面傾斜層の形成によ って、複合化エラストマ ーの力学強度が向上す ることも分かってきた。

<u>3-2. 生体の軟組織のような性質を示すソフト</u> マテリアル ¹³⁾

MEO₂MA とは構造の異 なる 2-methoxyethyl acrylate(MEA)というモ ノマーと架橋剤からな る架橋網目に対しても、 同様の方法で複合化エ ラストマーを合成した。 MEAの重合体(PMEA) (図 10A) は血液と接しても、 血中の細胞を活性化さ せず、血栓ができにくい ことが知られており¹⁴⁾、 体温の温度にて水にも 溶けにくいことから、 PMEA を生体軟組織のよ うな適切な柔らかさと 靱性を有するソフトマ

テリアルにできれば、人工血管や人工心臓弁など としての応用が可能になる。しかし、PMEAは、体 温付近の温度では粘着質な液体状態であり、PMEA のみでは自立可能な成形体を調製することは不 可能である。PMEAを化学的に橋かけすれば弾性体 となり、自立可能なエラストマーになるものの、 従来の架橋構造を有するエラストマーの力学物 性は単調な変化を示し、生体の軟組織に見合う力 学特性を示す状態にするのは簡単ではない。

著者らは、PMEA の低架橋網目とシリカ微粒子 (粒径110 nm)を複合化(図10B)することで、皮 膚や血管のような生体軟組織と同様の力学特性 を示す複合エラストマーが得られることを明ら かにした。¹³⁾この複合エラストマーは、シリカ微 粒子の量が30 vol%以上になると、J型の応力-ひ ずみ曲線を示す(図10C)。生体の軟組織は、少し 力を加えた場合には簡単にその形を変えるが、あ る程度以上変形が進むと急激に硬くなることか ら J 型の応力-ひずみ曲線になる。このような生 体軟組織の特徴的な力学的性質は偶発的な臓器 の破裂を防ぐ防御メカニズムの1つである。また、 この複合エラストマーの表面には、血栓の原因と なる血小板は吸着しにくいのに対し、血管内皮細 胞は接着することも確認した。つまり、生体の血 管の内壁と同じような表面状態になることが分 かった。この複合化エラストマーを利用して、そ の必要性が認識されながらも 70 年間実用化でき ていない小口径人工血管の開発に取り組み、我々 の健康寿命を格段に改善できることを目指して いる。

4. 結言

本稿では、星型高分子をビルディングブロックと いして用いた網目構造が均一な高分子網目の 合成とその機能発現、ならびに、サブミクロンサ イズの微粒子が秩序だった状態で高分子網目 と複合したエラストマーの機能について紹介し た。このようなソフトマテリアルのデザインは、最 近の精密合成法のツール化に伴って、シンプ ルな理論との対応が可能な精緻な構造を得るこ とを可能にしつつある。分子サイズからコロイド サイズで秩序だった状態にあるソフトマテリアル が、今後、我々の生活にどのような恩恵をもたら すのかはこれからの楽しみである。

参考文献

- Yukikazu Takeoka, Fumio Asai, Guohao Gao, Jialei He, Sizhe Liu; "Transparent and Mechanically High-performance Soft Materials Consisting of Colloidal Building Blocks" *Accounts of Material Research*, in press. (Invited review), DOI:10.1021/accountsmr.2c00059
- Okaya, Y., Jochi, Y., Seki, T., Satoh, K., Kamigaito, M., Hoshino, T., Nakatani, T., Fujinami, So., Takata, M., Takeoka, Y.; "Precise Synthesis of a Homogeneous Thermoresponsive Polymer Network Composed of Four-Branched Star Polymers with a Narrow Molecular Weight Distribution" *Macromolecules*, 53, 374-386 (2020).
- 3) Jochi, Y., Seki, T., Soejima, T., Satoh, K., Kamigaito,

M., Takeoka, Y.; "Spontaneous Synthesis of a Homogeneous Thermoresponsive Polymer Network Composed of polymers with a narrow molecular weight distribution"*NPG Asia Materials*, 10, 840-848(2018).

- 4) Yusuke Baba, Guohao Gao, Mitsuo Hara, Takahiro Seki, Kotaro Satoh, Masami Kamigaito, Taiki Hoshino, Kenji Urayama, and Yukikazu Takeoka; "Nonturbid Fast Temperature-Responsive Hydrogels with Homogeneous Three-Dimensional Networks by Two Types of Star Polymer Synthesis Methods" *Macromolecules*, 54, 22, 10468 – 10476 (2021).
- 5) DoWoo Kwon, Yuto Jochi, Yuumi Okaya, Takahiro Seki, Kotaro Satoh, Masami Kamigaito, Taiki Hoshino, Kenji Urayama, and Yukikazu Takeoka; "Nonturbid Fast Temperature-Responsive Hydrogels with Homogeneous Three-Dimensional Networks by Two Types of Star Polymer Synthesis Methods"*Macromolecules*, 54, 5750 – 5764 (2021).
- 6) Yuka Hiei, Ikuya Ohshima, Mitsuo Hara, Takahiro Seki, Taiki Hoshino, and Yukikazu Takeoka; "Shrinking rate of polymer gels composed of starshaped polymers of N-isopropylacrylamide and dimethylacrylamide copolymers: effect of dimethylacrylamide into the crosslinking network" *Soft Matter*, 18, 5204-5217 (2022).
- Tomoki Sakai, Nagisa Ito, Mitsuo Hara, Takahiro Seki, Mineto Uchiyama, Masami Kamigaito, Kotaro Satoh, Taiki Hoshino, and Yukikazu Takeoka;

"One-pot synthesis of structure-controlled temperature-responsive polymer gels"

Polymer Chemistry, 13, 4230-4240 (2022)

- Michika Onoda, Fei Jia, Yukikazu Takeoka and Robert J. Macfarlane;
 "Controlling the dynamics of elastomer networks with multivalent brush architectures" *Soft Matter*, 18, 3644-3648 (2022).
- 9) Yasumoto, A., Gotoh, H., Gotoh, Y., Imran, A. B., Seki, T., Sakai, Y., Ito, K., Takeoka, Y.;"Highly Responsive Hydrogel out of Poly(N-

isopropyl acryalamide) Grafted Polyrotaxane as Building Block Designed by Living Radical polymerization and Click Chemistry" *Macromolecules*, 50, 364-374 (2017).

Nucromolecules, 50, 50+-574 (2017).

- 10) X. Li, S. Nakagawa, Y. Tsuji, N. Watanabe, M. Shibayama, M., "Polymer gel with a flexible and highly ordered three-dimensional network synthesized via bond percolation" *Sci. Adv.* 2019, 5,No. eaax8647.
- 11) Watanabe K., Miwa, E., Asai, F., Seki, T., Urayama, K., Nakatani, T., Fujinami, So., Hoshino, T., Takata, M., Liu, C., Mayumi, K., Ito, K., Takeoka, Y.; "Highly Transparent and Tough Filler Composite Elastomer Inspired by the Cornea" ACS Materials Letters, 2, 325-330 (2020).
- 12) Fumio Asai, Takahiro Seki, Taiki Hoshino, Xiaobin Liang, Ken Nakajima, and Yukikazu Takeoka; "Silica Nanoparticle Reinforced Composites as Transparent Elastomeric Damping Materials"

ACS Applied Nano Materials, 4, 4, 4140-4152 (2021).

- 13) Fumio Asai, Takahiro Seki, Ayae Sugawara-Narutaki, Kazuhide Sato, Jérémy Odent, Olivier Coulembier, Jean-Marie Raquez, and Yukikazu Takeoka; "Tough and 3D-printable Poly(2methoxyethyl Acrylate)-Silica Composite Elastomer with Anti-Platelet Adhesion Property" ACS Applied Materials & Interfaces, 12, 41, 46621 - 46628 (2020).
- 14) Tanaka, M.; Motomura, T.; Kawada, M.; Anzai, T.; Kasori, Y.; Shiroya, T.; Shimura, K.; Onishi, M.; Mochizuki, A. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA) relationship between protein adsorption and platelet adhesion on PMEA surface. *Biomaterials* 2000, *21* (14), 1471-1481.