Accounts of Materials & Surface Research

Overall water-splitting photocatalysts, sensitive to red light, for solar hydrogen production

Hiroshi Irie*

Clean Energy Research Center, University of Yamanashi 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan hirie@yamanashi.ac.jp

We have investigated water-splitting photocatalysts under visible light on the basis of a material design and a mechanistic approach. Then, we discovered a solid-state hetero-junction photocatalyst, which achieved the overall pure-water splitting under red light, following a conventional well-known Z-scheme mechanism, but the present photocatalyst did not require any chemicals as a redox mediator. We connected zinc rhodium oxide (ZnRh₂O₄) and bismuth

vanadium oxide (Bi₄V₂O₁₁) as hydrogen (H₂)- and oxygen (O₂)-evolution photocatalysts, respectively, with silver (Ag) to prepare a solid-state Z-scheme photocatalyst (ZnRh₂O₄/Ag/Bi₄V₂O₁₁). In this photocatalyst, Ag acted as a solid-state electron mediator for the transfer of electrons from the conduction band of Bi₄V₂O₁₁ to the valence band of ZnRh₂O₄. Utilizing thus-constructed ZnRh₂O₄/Ag/Bi₄V₂O₁₁, the simultaneous evolution of H₂ and O₂ from pure water at a ratio of ~ 2:1 was accomplished under irradiation with visible light up to a wavelength of 740 nm (red light).

Keyword: solar hydrogen, water splitting, Z-scheme system, hetero-junction photocatalyst, red light

Brief Personal History of Author

Hiroshi Irie (born in 1969, Japan) studied inorganic materials science and received his B.E. and M.E. degrees from Tokyo Institute of Technology in 1992 and 1994, respectively. From 1994 to 1997, he worked at Sumitomo Metal Industries, LTD. as a research engineer. In 2000, he received his Ph. D. degree from the University of Tokyo in the Department of Interdisciplinary Studies. He was a research staff member at Kanagawa Academy of Science and Technology until 2001. He joined the University of Tokyo as a research associate in 2001. He became a lecturer and an associate professor at the University of Tokyo in 2006 and 2008, respectively. He was promoted to a full professor in 2009 at Clean Energy Research Center in University of Yamanashi. His current research interests include creations of high-

performance energy-conversion materials, such as photocatalysts, thermoelectric materials, and so on.

可視光全域利用が可能な水分解光触媒

入江 寛 山梨大学クリーンエネルギー研究センター

1. 水分解光触媒による水素製造

エネルギー・環境問題が深刻になりつつある 現在、エネルギー安定供給、環境保全、経済成 長が同時に達成することが求められている。そ の中で水素(H₂)エネルギーは環境調和性とエ ネルギー効率が高く、次世代のエネルギーとし て大きな期待を集めている。¹光触媒を用いて 太陽エネルギーと水だけでH₂を製造する(太陽 光による水の完全分解)ことができれば、エネル ギー・環境問題の解決に資する技術のひとつと なり得るであろう。

酸化チタン(TiO₂)光触媒/白金電極を用い、 太陽光を利用して水を分解しH₂・酸素(O₂)を製 造した、いわゆる本多 – 藤嶋効果が 1970 年代 初めに報告されて以来、²世界中でこの研究が 行なわれてきた。この水分解技術は日進月歩で あるが、現在のところ実用化には至っていない。 しかし、光触媒を用いた水の分解は光エネルギ ーを化学エネルギーに変換するという観点から 人工光合成と言ってもよく学術的にも有意義な 反応であり、さらには、エネルギー・環境問題の 解決に資することから実用的にも社会的にも有 意義な反応であるといえる。

光触媒(一般的に半導体)を用いた水の分解 反応の原理を Figure 1 に示す。半導体は価電 子帯(VB)と伝導帯(CB)、その間に電子の存在 し得ない禁制帯をもったバンド構造を有する。こ の禁制帯のエネルギー幅をバンドギャップ(Eg) と呼んでいる。ここで Eg (eV)と光の波長 (nm)の 関係は次の(1)式で表される。

 E_g (eV) = 1240/光の波長 λ (nm) (1) 光触媒にその E_g より大きなエネルギーをもつ 光を照射するとVB の電子が CB に励起される。 CB に励起された電子はプロトンを還元し $H_2 を$ 生成する。一方、VBに生じた正孔は水を酸化し て O_2 を生成する。これらの水の完全分解反応 (H_2 , O_2 が量論比2:1で生成)が起こる熱力学

Acc. Mater. Surf. Res. 2020, Vol.5 No.4, 123-131.

的な必要条件は、CBの下端がH⁺/H₂酸化還元 電位(0 V vs. SHE)より負側であり、かつVB上 端がO₂/H₂O酸化還元電位(1.23 V vs. SHE)よ り正側でなくてはならないことである(以降、これ を水分解の熱力学的条件と呼ぶ)。これら酸化 還元電位の条件が、十分条件ではないのは、 正孔・電子の分離特性やそれらの寿命、酸化還 元反応における過電圧、反応活性点といった複 雑な要因が関与するためである。³

Figure 1. Basic mechanism of overall water splitting on a semiconductor particle (left). Band structure of a typical oxide, being able to split water thermodynamically (right).

2. 可視光応答型光触媒の既往の研究

太陽光の大部分が可視光であるため、太陽光 を有効に利用するためには光触媒に可視光応 答性をもたせる必要がある。水分解光触媒は水 中で光照射したときの安定性が求められるため、 TiO₂に代表されるように酸化物を考えることが多 い。そこで、酸化物半導体のバンド構造を考え てみよう。酸化物半導体の多くの VB は O2p 軌 道で構成されている。Scaife は数十種類の酸化 物について Eg とフラットバンドポテンシャル(V_{fb}) の関係を整理し、V_{fb}(vs.SHE) = 2.94 – Eg (eV)の 関係が成り立つことを報告している。⁴近似的に フラットバンドポテンシャルは CB 下端の電位 (E_{CBM})と見なすことができるため、E_{CBM}(vs.SHE) = 2.94 - Eg(eV), $tabb, Eg = 2.94 - E_{CBM}$ (vs.SHE)と書き直すことができる。つまり、一般 の酸化物では VB 上端の電位は 2.94 V (vs.SHE)、すなわち約 3 V(vs.SHE)となる (Figure 1)。⁴ そのため、プロトンを還元できるポ テンシャル(CBの下端がH⁺/H2酸化還元電位 0 V(vs. SHE)より負)を有する CB をもつ酸化物 半導体のバンドギャップは必然的に3 eV より大 きくなり、紫外光しか利用できない。可視光を吸 収できるよく知られた酸化タングステン(WO3)や 酸化鉄は、CBのレベルが低いため(CB下端が H⁺/H₂酸化還元電位 0 V(vs. SHE)より正)、H₂ 発生活性をもたない。そこで、可視光照射下で 水の完全分解のための光触媒創出の指針とし て、

- 1)既存のバンドギャップの大きい(紫外光しか 利用できない)光触媒(例えば、TiO₂ やチタン 酸ストロンチウム(SrTiO₃)など)に異種イオンを ドープ、もしくは固溶体を形成することによって、 CB 下端のポテンシャルは落とさずに(正側に もってくることなく)、VB 上端を上方に(負側) にシフトさせるか、孤立した準位を形成する。 すなわち、O 2p 軌道と比較的近いエネルギー をもつ d¹⁰, d¹⁰s² 電子を有するカチオン(Ag⁺, Cu⁺, Pb²⁺, Bi³⁺イオン)や p⁶ 電子を有するアニ オン(N³⁻, S²⁻)を導入し、O 2p 軌道と混成させ ることによってVB 上端を上方(負側)にシフト、 もしくは VB 上方に孤立準位を形成する、
- 2) O 2p 軌道に代わる VB を有する材料を探索 する。同様に VB が O 2p 軌道に加え, 金属イ オンの d¹⁰, d¹⁰s², p⁶ 軌道から構成される酸化物 や酸窒化物、酸硫化物、窒化物、硫化物を探 索する、
- ことが不可欠となる。

このような観点から,数多くの光触媒材料が研究され、可視光照射のもと再現性よく水を完全分解できる先駆的材料として酸化亜鉛(ZnO)-窒化ガリウム(GaN)固溶体が見出された。⁵ ZnO-GaN固溶体のCBは主にGa4s,4p軌道から構成され、VBはN2pとZn3d軌道から構成され、VBはN2pとZn3d軌道から構成される。このN2p,Zn3d軌道による反結合性軌道がVB上部を形成し,バンドギャップが2.6 eV 程度まで狭窄するとしている(GaN, ZnOのバンドギャップはそれぞれ 3.4, 3.0 eV)。その後、 続々と見出され、現在、可視光で水を完全分解 できる 10 数個の材料が報告されている。⁶⁻¹⁰ そ の中でも現在、最も長い波長で水を分解できる 材料は、イットリウムチタン酸硫化物(Y₂Ti₂O₅S₂) で波長 630 nm 程度まで利用できるようになって いる。¹¹

一方、このような数多くの研究を通じて、可視 光照射下で犠牲剤存在のもと水を還元し H₂ だ け発生できる水の半反応光触媒(H2発生光触 媒)、反対に犠牲剤のもと水を酸化し O2 だけ生 成できる水の半反応光触媒(O2発生光触媒)は 数多く見出された。12 前者の H2 発生光触媒で は犠牲剤として例えばメタノール(CH₃OH)を共 存させると光励起正孔は水を酸化し O2 を発生 することはできないが、CH3OH は酸化できるた め、光励起電子がプロトンを還元し H2を発生で きるのである。一方、O2発生光触媒では犠牲剤 として例えば硝酸銀を共存させると光励起電子 はプロトンを還元しH2を発生することはできない が,銀イオンは還元できるため光生成正孔が水 を酸化し O2 を発生できるのである。それら半反 応光触媒を組み合わせた光触媒系が可視光照 射下で水を完全分解できることが報告されてい る(Figure 2)。¹³ これらの系では二段階の光励 起を利用しているのである。すなわち、例えば O2発生光触媒として WO3もしくはバナジン酸ビ スマス(BiVO₄)、H₂発生光触媒としてロジウム (Rh)ドープ SrTiO₃(SrTiO₃:Rh)もしくは酸窒化タ ンタル(TaON)を個々に水中に分散させ、ヨウ 素酸イオン(IO3-)/ヨウ化物イオン(I-)や鉄(III)イ オン(Fe³⁺)/鉄(II)イオン(Fe²⁺)といった試薬とし ての酸化還元媒体を添加し、可視光を照射す る。このとき、O2 発生光触媒側の光生成正孔は 水を酸化し O2 を生成するが, 電子は酸化還元 媒体を還元する。一方、H2 発生光触媒側の電 子はプロトンを還元し H2 を生成するが、正孔は 酸化還元媒体を酸化する。このように酸化還元 媒体を通じて水の完全分解反応が触媒的に進 行するのである。その電子の流れの型から Z ス キームと呼ばれている。この発展形として、酸化 還元媒体を必要としない全固体型二段階励起

光触媒が報告された。Ru 担持 SrTiO₃:Rh (Ru/SrTiO₃:Rh)と光還元した酸化グラフェン (PRGO)を担持した BiVO₄(PRGO/BiVO₄)を、 ゼータ電位差を利用して接合した系が報告され ている(Ru/SrTiO₃:Rh/RGO/BiVO₄)。^{14,15} しか し、これら Ru/SrTiO₃:Rh)と PRGO/BiVO₄の固 体化は静電的引力を利用するためには pH=3 に設定する必要があり酸化還元媒体は不要で あるものの硫酸など試薬が必要である。実用化 を考えた場合、試薬不要の純水の完全分解が 求められる。近年、Kudo らは Ru/SrTiO₃:Rh と BiVO₄ を直接接合することによって純水の完全 分解に成功しているが(Ru/SrTiO₃:Rh/BiVO₄)、 ¹⁶ 利用波長は高々520 nm に留まっている。

photo-excitation (Z-scheme) system.

3. 可視光全域利用に向けて、そのアプローチ

当研究室では可視光全域(赤色光)を利用し、 純水(試薬を必要としない)を完全分解できる光 触媒の創製を目指し検討を行ってきた。以下に 当研究室で行ってきた取り組み例を紹介する。

1. 節において水分解の熱力学的条件は水を 完全分解するための必要十分条件でないことを 述べた。これは、中学校の化学で学ぶ水の電 気分解には 1.5 V 必要、すなわち、過電圧とし て数 100 mV 必要であること以外に異なる要因 があると考えた。実際に、1.5 V で水分解が進行 すれば波長 830 nm までの近赤外光を利用でき るはずであるが、そのような光触媒材料は見出 されていない。これは、 O_2/H_2O 酸化還元電位 (1.23 V vs. SHE)は4電子反応($2H_2O \rightarrow O_2$ + 4e⁻ + 4H⁺)で、電子 4 個を一度に水から引く抜く 反応を考えているためで、そこに現実とのギャッ プがあると考えた。すなわち、数100 mV 過電圧 も考慮した 1.5 eV のバンドギャップでかつ水分 解の熱力学的条件を満たせば水分解が進行す ると考えてしまっていたためである。実際は逐次 的に電子 4 個を水から引き抜く、1 電子反応 (H₂O →OH•+ e⁻ + H⁺)が進行しているのではな いかと筆者は考えている。その場合の酸化還元 電位は 2.81 V (vs. SHE) で強い酸化力が必要と なる。(電子2個を引く抜く2電子反応(2H₂O→ H₂O₂ + 2e⁻ + 2H⁺)も考え得るが、その場合の酸 化還元電位は 1.76 V(vs. SHE)となる)。なぜな ら電子4個(もしくは電子2個)を同時に水から 引き抜くには助触媒が必要と思われるが O2 発 生側に助触媒を付けていないためである。すな わち、赤色光に応答し水を完全分解するために は、1.5 eV のバンドギャップをもち、かつ水分解 の熱力学的条件を満足する材料を見出し、さら に4電子反応を誘起できるO2発生助触媒が必 要となる。O2 発生助触媒としてコバルトリン系 (CoPi)が報告され、盛んに研究されているが 4 電子反応を誘起できているという実験事実はな いようである。17後述のように、水分解の熱力学 的条件を満足する材料の探索、また、4 電子反 応を誘起できる O2 発生助触媒の探索研究は並 行して行うことにして、ここでは別のアプローチ で研究を進めた。

筆者は金(Au)を介して硫化カドミウム(CdS)と TiO₂ を 接 合 し た 全 固 体 型 光 触 媒 (CdS/Au/TiO₂)の研究 ¹⁸を参考に導電層を介 して H₂発生光触媒と O₂発生光触媒を接合し、 固体型二段階励起光触媒を構築することによっ て赤色光を利用し、純水を完全分解できる光触 媒を創製しようと考えた。すなわち、このような接 合系を構築すれば、導電層が水分解に関与し ない H₂発生光触媒の VB の正孔と O₂発生光 触媒の CB の光励起電子を消滅させ、H₂発生 光触媒の CB の光励起電子がプロトンを還元し H₂を、O₂発生光触媒の VB に生成した正孔が 水を酸化し O₂を発生できると考えた(Figure 3)。 そして H₂発生光触媒と O₂発生光触媒の E_gが 共に 1.7 eV 以下であれば波長 730 nm の赤色 光に応答できることになる。この考えを基に、H2 発生光触媒とO2発生光触媒の探索を行った。

Figure 3. Reaction mechanism of an all solidstate two-step photo-excitation system with electrons flow.

4. H₂ 発生光触媒としての亜鉛ロジウム酸化物 (ZnRh₂O₄)

すでに述べたように多くの酸化物半導体光触 媒の VB は O 2p 軌道から構成されるため、VB 上端の電位は3V付近に位置する。従って、CB 下端の電位が 0 V(vs. SHE)より負で、Egが 1.7 eV 以下の酸化物はほぼあり得ないことになる。 一方で、筆者は全く異なる観点から、擬閉殻電 子構造を取り得る d⁶ 金属イオンを利用する方法 に注目した。d[®]電子配置を有する金属イオンの うちロジウムイオン(Rh³⁺)は、その d 軌道は正八 面体の結晶場において t2g-eg に配位子場分裂 する。その d 軌道の分裂は大きく Rh³⁺は必ず低 スピン状態をとるため、t2g 軌道に電子が 6 個 (t_{2g}^{6}) 、 e_g 軌道に電子が0個 (e_g^{0}) 入る。すなわち、 t2g⁶-eg⁰において擬閉殻の電子構造を有すると 考えられる。実際、立方晶 ZnRh₂O₄(すなわち、 RhO₆正八面体)では、その t₂⁶-e⁰分裂によって VB が t_{2g}⁶軌道、CB が eg⁰軌道から構成されるこ とが知られていた。¹⁹ この ZnRh₂O₄ では t_{2g}⁶ 軌道 が O 2p 軌道よりも上方(電位では負側)に存在 するため、その VB 上端電位が 3.0 eV より大き く負側に位置することが想定できた。

ZnRh₂O₄ 粉末は酸化亜鉛(ZnO)、酸化ロジウム(Rh₂O₃)を出発原料に通常の固相法を用いて

合成した。紫外可視拡散反射(UV-vis)スペクト ル(Figure 4)からクベルカームンク変換(ここで は示していない)により求めた Egは 1.2 eV と見 積もられた。水の半分解による H2 発生は、Xe ラ ンプ全光照射下、犠牲剤としてホルムアルデヒ ド(HCHO)もしくは CH₃OH を用いて評価した。 犠牲剤に CH₃OH を用いたときには H₂発生は ほとんど確認できなかったが、HCHO では H2発 生が確認できた。つまり、ZnRh₂O₄の VB に生成 する正孔は CH₃OH を酸化できないが HCHO は酸化できることを示しており、それら犠牲剤の 酸化還元電位を考慮するとそのVB上端の電位 は 0.1~0.2 V 程度にあると想定される。これは 上述のように、ZnRh₂O₄の VB は Rh³⁺の t_{2g}⁶ 軌道 軌道から構成されるため一般的な酸化物の VB 上端に比べ大きく負側にシフトしたものと考えら れる。VB上端の電位が 0.1~0.2 V(vs. SHE) 程 度であり、かつ Eg が 1.2 eV と見積もられている ため CB 下端の電位は-1.1~-1.0 V(vs. SHE) となり、H⁺/H₂酸化還元電位(0 V vs. SHE)より 十分に負側であり、熱力学的にもプロトンを還 元しH2を発生可能である。HCHOを犠牲剤とし て用い、測定した H2 発生の作用スペクトル結果 を Figure 4 に示す。波長を制限した単色光を照 射し、そのときの H2 発生速度から H2 発生の外 部量子収率(Apparent quantum efficiency, AQE) を求めプロットしたものである。AQE は概ね 30 数%と光の利用効率は高いことが示された。右 軸の ZnRh₂O₄の UV-vis スペクトルと、左軸の ZnRh₂O₄のH₂発生のAQEが、710 nmより短波 長側では重なっていることが確認できた。770 nm 単色光照射では QE は低下し UV-vis とは 重なっていない。しかしながら、UV-vis の 770 nm 付近の吸収は ZnRh₂O₄中の欠陥によるもの と考えることができ、500~650 nm 範囲の吸収の 減少の延長線上に 770 nm 単色光照射での AQE が存在すると考えられる。以上から光の吸 収とAQEはよく一致すると見なすことができ、H2 の発生は ZnRh₂O₄の光励起によってもたらされ たものと考えることができた。また、770 nm 単色 光照射では AQE は低下するものの H₂発生が 確認できたため、ZnRh₂O₄は可視光域全体の光 を利用できることが明らかとなった。以上から、

犠牲剤の存在下で可視光全域が利用できH₂を 発生することができる光触媒材料を見出した。²⁰ この ZnRh₂O₄は固体型二段階励起光触媒のH₂ 発生光触媒として期待できる。

Figure 4. Dependence of apparent quantum efficiency (AQE) for H_2 evolution on the wavelength of irradiating monochromatic light. UV-visible diffuse reflectance spectrum of ZnRh₂O₄ is also shown.

4. O₂ 発生光触媒としてのビスマスパナジウム酸化物(Bi₄V₂O₁₁)

 O_2 発生光触媒は H_2 発生光触媒と異なり、候 補となる材料はいろいろと存在する。その中で 我々は銀アンチモン酸化物 (AgSbO₃, Eg = 2.4 eV)^{21,22} や Bi₄V₂O₁₁ (Eg = 1.7 eV)を選択した。こ こでは赤色光に応答することが目的であるため Bi₄V₂O₁₁ に関して記述する。

Bi₄V₂O₁₁ は単結晶を育成した。すなわち、原 料である酸化ビスマス(Bi₂O₃)、酸化バナジウム (V₂O₅)を定比で混合後、白金るつぼに入れ、 電気炉空気中 940℃で溶融し、その後、徐冷す ることにより育成した。育成した薄片状の単結晶 は粉砕することにより Bi₄V₂O₁₁ 粉末を得た。なお、 本稿では単結晶由来の Bi₄V₂O₁₁ 粉末のデータ を示すが、Bi₂O₃, V₂O₅ を出発原料に固相法で 作製した Bi₄V₂O₁₁ 粉末を用いても可能である。 ただし、単結晶由来の Bi₄V₂O₁₁ 粉末を用いた方 が活性は数倍高い。これは粉砕したとはいえ薄 片形状が維持されており、結晶性の高さ、結晶 異方性の大きさが反映されたと考えている。

Figure 5 に Ce⁴⁺(硫酸セリウム、Ce(SO₄)₂)を犠 牲剤として用いて測定した Bi₄V₂O₁₁ の O₂ 発生 アクションスペクトルを示す。比較として Bi₄V₂O₁₁の UV-vis スペクトルおよび光音響(PA)スペクト ルを示している。

まず Bi₄V₂O₁₁の UV-vis スペクトルでは長波長 に向かうに従い吸収は減少するが、長波長領 域でもかなり強い吸収が認められた。長波長領 域での強い吸収は、この Bi₄V₂O₁₁に限らず度々 観察され、活性に寄与しない格子欠陥(酸素欠 陥)によるものと推察される。一方、PAスペクトル では波長が長くなるに従い吸収は大きく減少し、 この PA 吸収は活性に寄与する吸収であること が知られている。²³ 実際、O₂ 発生の AQE は Bi₄V₂O₁₁のUV-visスペクトルには一致せず、PA スペクトルによく一致した。以上からO2の発生は Bi₄V₂O₁₁の光励起によってもたらされたものと考 えることができた。少なくとも、750 nm 単色光照 射で O₂発生が確認できたため、Bi₄V₂O₁₁も可視 光ほぼ全域の光を利用できることが明らかとな った。以上から、犠牲剤の存在下で可視光ほぼ 全域の光が利用でき O2を発生することができる 光触媒材料を見出した。²⁰この Bi₄V₂O₁₁ は固体 型二段階励起光触媒の O2 発生光触媒として期 待できる。

Figure 5. Dependence of AQE for O₂ evolution on the wavelength of irradiating monochromatic light. UV-visible diffuse reflectance spectrum and photoacoustic spectrum of Bi4V₂O₁₁ are shown.

5. 導電層としての銀 (Ag)と Ag を介した ZnRh₂O₄ と Bi₄V₂O₁₁の接合

導電層として Ag を選択した。それは Ag を介 した接合方法を考えたときに、酸化銀(Ag₂O)は 約 280℃で熱分解して Ag に変化すること、

https://www.hyomen.org

ZnRh₂O₄とBi₄V₂O₁₁の間に挿入されていない余 剰な Ag は硝酸(HNO₃)やアンモニア水溶液 (NH₄OH)により溶解、除去できるからである。

ZnRh₂O₄, Ag₂O, Bi₄V₂O₁₁粉末をモル比1:1: 1.2 で混合したのちペレット成型し、750°C, 2 h で熱処理を行った。微粉砕後、余剰 Ag を除去 するため硝酸処理を行ない、蒸留水でよく洗浄 後に乾燥し、固体型二段階励起光触媒 (ZnRh₂O₄/Ag/Bi₄V₂O₁₁)を作製した。挿入され た Ag が Ag⁰として挿入されているかの確認のた め、Ag 3d の X線光電子分光(XPS)測定を行っ た。ここでは図示していないが Ag 3d_{5/2} と Ag 3d_{3/2}ピークが 368.6 eV, 374.6 eV に認められた ため、Ag⁰として挿入されていることが確認でき た。²⁴

Figure 6. SEM (a) and STEM (b) images of $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$. STEM-EDS element maps (c, d, e), in which blue (c), red (d), and yellow (e) colors correspond to Bi, Rh, and Ag, respectively.

作製した ZnRh₂O₄/Ag/Bi₄V₂O₁₁粉末の走査型 顕微鏡写真を Fig. 6(a)に示す。Bi₄V₂O₁₁(粒径 約 10 µm)上に ZnRh₂O₄(粒径 100~200 nm)が まぶされているような状態が観察できた。また、 走査透過顕微鏡 (STEM)の高角度散乱暗視野 像 (HAADF)を Fig. 6(b)に、Bi, Rh, Ag のエネル ギー分散型 X 線分析 (EDS)元素マッピングの 結果をそれぞれ Figs. 6(c), 6(d), 6(e)に示す。 SEM 像と同様に HAADF でも Bi₄V₂O₁₁上に ZnRh₂O₄ が存在する状態が観察され、それに対 応し、Bi, Rh が存在している。また、ZnRh₂O₄ と Bi₄V₂O₁₁の境目付近 (Fig. 5(e)の中央部)に Ag が存在し、ZnRh₂O₄とBi₄V₂O₁₁の間にAg が挿入 されていることが分かる。

波長 545, 610, 700, 740 nm の LED 光照射に よる純水を用いた水分解実験を行った結果をそ れぞれ Figs. 7(a), 7(b), 7(c), 7(d)に示す。どの波 長でも H₂と O₂が化学両論比での発生を確認で きた。ここでは示していないが、同位体水 H₂¹⁸O を用いた水分解実験では¹⁶O¹⁸O, ¹⁸O¹⁸Oを検出 できており、740 nm の赤色光照射で純水の完 全分解を達成できたと考えている。これは、 我々の知る限り最も長い波長での水の完全分

Figure 7. Time courses of H₂ and O₂ evolution resulting from water splitting by ZnRh₂O₄/Ag/Bi₄V₂O₁₁ (closed circles with solid lines) under irradiation with 545-nm LED (a), 610-nm LED (b), 700-nm LED (c), and 740-nm LED light (d).

解である。^{25,26} また、ZnRh₂O₄, Bi₄V₂O₁₁ 単体で は純水、可視光照射では H₂とO₂は全く検出で きないことを確認している。また、ZnRh₂O₄ と Bi₄V₂O₁₁を直接接合した場合にも H₂とO₂は全 く検出できなかった。もちろん、光照射なしの場 合にも ZnRh₂O₄/Ag/Bi₄V₂O₁₁から H₂とO₂の発 生は全認められなかった。これらの実験事実か ら、ZnRh₂O₄/Ag/Bi₄V₂O₁₁ での水の完全分解は Fig. 3 で説明したように、Ag が水分解に関与し ない ZnRh₂O₄の VB 正孔とBi₄V₂O₁₁の CB 光励 起電子を消滅させ、ZnRh₂O₄の CB 光励起電子 がプロトンを還元し H₂を、Bi₄V₂O₁₁の VB 正孔が 水を酸化し O₂を発生させているためと考えてい る。

4. まとめ

水分解光触媒による H₂ 製造、可視光応答型 光触媒の既往の研究、さらに当研究室での可 視光全域利用に向けての取り組みを紹介した。

ZnRh₂O₄とBi₄V₂O₁₁にAgを挿入した固体型二 段階励起光触媒を創製し、波長 740 nm の赤色 光照射での水の完全分解に成功した。我々の 知る限り、現状での最も長い波長での純水の完 全分解である。水分解活性はまだ低いものの、 水の完全分解に必要な助触媒(既往の完全分 解できる光触媒では助触媒を使っている)を使 わずに完全分解できていることは特筆すべきこ とのように考えている。最近の研究で、選択的に ZnRh₂O₄上へ助触媒を担持することで活性が向 上している。また、ここで紹介した光触媒は水の 分解だけでなく二酸化炭素還元にも転用可能 で、二酸化炭素から我々が利用可能なメタン (CH₄)や CH₃OH などにも変換できる。いわゆる 人工光合成反応の実用化に向けて、研究を遂 行していきたい。

6. 謝辞

本研究は北海道大学触媒科学研究所の大谷 文章教授との共同研究(#15A1002, #16A1002, #17B1003)で行った。また本研究は JSPS 科研 費 JP17H03126 および JST CREST の助成を受 けたものである。当研究室、高嶋准教授、小林 君、栗原君、尾﨑君、依田君が実験を行った。 皆様にあらためて感謝申し上げる。

参考文献

- 1) 文部科学省科学技術政策研究所,科学技術 動向研究センター編著,図解水素エネル ギー最前線. 2003,149.
- 2) Fujishima, A; Honda, K., *Nature*, **1972**, *238*, 37–38.
- 3) 藤嶋昭他著, 独立行政法人科学技術振興機 構編, ナノテクとエネルギー. 2006, 45.
- 4) Scaife, D. E., Solar Energy, 1980, 25, 41-54.
- Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., *Nature*, 2006, 440, 295.
- Liu, H.; Yuan, J.; Shangguan, W.; Teraoka, Y., J. Phys. Chem. C, 2008, 112, 8521–8523.
- Lei, N.; Tanabe, M.; Irie, H., Chem. Commun., 2013, 49, 10094–10096.
- Liao, L.; Zhang, Q.; Su, Z.; Zhao, Z.; Wang, Y.; Li, Y.; Lu, X.; Wei, D.; Feng, G.; Yu Q.; Cai, X.; Zhao, J.; Ren, Z.; Fang, H.; Robles-Hernandez, F.; Baldelli, S.; Bao, J., *Nat. Nanotechnol.*, **2014**, *9*, 69–73.
- Liu, J.; Liu, Y.; Liu, N; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z., Science, 2015, 347, 970–974.
- Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K.; Angew. Chem., Int. Ed., **2015**, *54*, 2955–2959.
- Wang, Q.; Nakabayashi, M.; Hisatomi, T.; Sun, S.; Akiyama, S.; Wang, Z.; Pan, Z.; Xiao, X.; Watanabe, T.; Yamada, T.; Shibata, N.; Takata, T.; Domen, K., *Nature Mater.*, **2019**, *18*, 827– 832.
- 12) Kudo, A., *Inter. J. Hydrogen Energy*, **2007**, *32*, 2673–2678.
- Sayama, K.; Mukata, K.; Abe, R.; Abe, Y.; Arakawa, H., J. Photochem. Photobiol. A Chem., 2002, 148, 71–77.
- 14) Sasaki, Y.; Nemoto, H.; Saito, K.; Kudo, A., J. Phys. Chem. C, 2009, 113, 17536–17542.
- 15) Iwase, A.; Ng, Y. H.; Ishiguro, Y.; Kudo, A.;

Amal, R., J. Am. Chem. Soc., 2011, 133, 11054–11057.

- Jia, Q.; Iwase, A.; Kudo, A., *Chem. Sci.*, 2014, 5, 1513–1519.
- 17) Kanan, M. W.; Nocera, D. G., *Science*, 2008, 321, 1072–1075.
- 18) Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K., *Nature Mater.*, **2006**, *5*, 782–786.
- Mizoguchi, H.; Hirano, M.; Fujitsu, S.; Takeuchi, T.; Ueda, K.; Hosono, H., *Appl. Phys. Lett.*, **2002**, *80*, 1207–1209.
- 20) Takimoto, Y.; Kitta, T.; Irie, H., *Int. J. Hydrogen Energy*, **2012**, *37*, 134–138.
- 21) Kobayashi, R.; Tanigawa, S.; Takashima, T.; Ohtani, B.; Irie, H., *J. Phys. Chem. C*, 2014, *118*, 22450–22456.
- 22) Hara, Y.; Takashima, T.; Kobayashi, R.; Abeyrathna, S.; Ohtani, B.; Irie, H., *Appl. Catal. B: Environ.*, **2017**, *209*, 663–668.
- 23) Murakami, N.; Mahaney, O. O. P.; Abe, R.; Torimoto, T.; Ohtani, B., *J. Phys. Chem. C*, 2007, *111*, 11927–11935.
- 24) Houflund, G. B.; Hazos, Z. F.; Salaita, G. N., *Phys. Rev. B*, **2000**, *62*, 4482–4486.
- 25) Kobayashi, R.; Kurihara, K.; Takashima, T.;
 Ohtani, B.; Irie, H., *J. Mater. Chem. A*, 2016, *4*, 3061–3067.
- 26) Kobayashi, R.; Takashima, T.; Tanigawa, S.; Takeuchi, S.; Ohtani, B.; Irie, H., *Phys. Chem. Chem. Phys.*, **2016**, *18*, 27693–2837.