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Studies on the surface structure of an icosahedral quasicrystal and on thin film growth on a
quasiperiodic substrate are presented. Scanning tunneling microscopy (STM) images from the
fivefold surface of icosahedral Ag-In-Yb quasicrystal show a step-terrace structure of an
aperiodic sequence of steps with different heights. For
higher resolution images, characteristic local structures
of atoms are observed commonly on any terraces. From a
comparison of these findings with the bulk structure of
icosahedral Cd-Yb quasicrystal, an isostructural material
to Ag-In-Yb quasicrystal, it follows that the surface
termination perpendicular to the fivefold axis occurs at
planes intersecting centers of the atomic cluster, the
building unit of quasicrystals. Pb deposition on the
fivefold surface gives rise to the growth of Pb layers with
quasiperiodic structure. STM observations and first
principle calculations reveal that the atomic structure of
the Pb film is the same as that of the substrate. This is the
first step toward the realization of the single element
quasicrystal.
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Figure 1. Tsai-type cluster of Cd-Yb

quasicrystals. The five sub-shells are,
from inside to outside, a tetrahedron of 4
Cd atoms, a dodecahedron of 20 Cd
atoms (diameter of the circumscribed
circle=0.86 nm), a icosahedrons of 12 Yb
atoms (0.11 nm), an icosidodecahedron
of 30 Cd atoms(0.13 nm) and a rhombic
triacontahedral with 92 Cd atoms (0.16

nm).
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Figure 2. Back Laue X-ray diffraction

patterns for a single-grain Ag-In-Yb
quasicrystal taken with incidences along
the (a) 2-fold, (b) 5-fold and (c) 3-fold

axes. Reproduced from Ref. 11.
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Figure 3. The intensity ratio of Ag 3dsy,
In 3ds2 and Yb 4ds2 core-level
photoemission from the fivefold
surface of Ag-In-Yb quasicrystal after
sputtering and the following annealing.

Bars on the right show ideal intensities

for Ag44ln44Yb1s.

Figure 4. (a,b) RHEED images from the
fivefold surface of Ag-In-Yb quasicrystal,
(a) after sputtering and (b) after
annealing at 200 °C. The large and strong
spot is due to a reflection from objects
other than the sample.Reproduced from
Ref 13. (c) LEED pattern from the same
surface after annealing at 400 °C

(electron energy: 23.4 eV).
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Figure 5. A large scale STM image of the
fivefold surface of Ag-In-Yb quasicrystal.
Reproduced from Ref 14.
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Figure 6. (a,b) High resolution STM images of the clean fivefold surface of Ag-In-Yb
quasicrystal taken at (a) -0.5 V (23 nm x 23 nm) and (b) 0.95 V (20 nm x 20 nm). An example of

the PO pentagon is highlighted in colored lines. The image (b) is processed to enhance fine

structures by superimposing a Fourier filtered image. Reproduced from Ref. 15 with
permission from The Royal Society of Chemistry. (c) A close-up image of the rectangular

region given in Figure 6(b). An FPF motif is highlighted with a ball-stick drawing.
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Figure 7. Atomic structure of CcIFP

extracted from the model structure of
Cd-Yb quasicrystal (50 nm x 50 nm). Cd,
Yb and the center of cluster are displayed
in red, green and grey dots, respectively.
Structures corresponding to the PO

pentagon and the FPF motif are marked

with lines.
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Figure 8. Relative atomic density along
the fivefold axis (red: Cd, green: Yb,
black: total, blue: cluster centers). The
density is evaluated with the average
within a layer of 0.02 nm in thickness.
The maximum projected atomic density
in this region is comparable to that of the
closed-packed Yb surface. The position
of the cluster centers is marked by

arrows.
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Figure 9. (a) Formation of the first Pb

layer. PO and P1 features (see text) are
marked by a pentagon and circles,
respectively (30 nm x 30 nm). (b) A
close-up image of the P1 feature formed
at the corner of a PO pentagon. (c) The
early stage of the second Ilayer
formation. Pb atoms form P2 pentagons
(30 nm x 30 nm). (d) A network of Pd
decagons forms the second layer (30 nm

x 30 nm). Reproduced from Ref.18.
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Figure 11. STM images of multilayer film
of Pb at different coverages, showing Pb

islands of different heights. Reproduced

from Ref 18.
Figure 10. Schematic views of Pb Pb
adsorption sites (white dots) projected 3
on the CcIFP, for (a) the first layer, (b) the
initial stage of the second layer and
c) the completed second layer.
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